
 Python Programming and Basics of AI & Data Science

 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Manonmaniam Sundaranar University,

Directorate of Distance & Continuing Education,

Tirunelveli - 627 012 Tamilnadu, India

OPEN AND DISTANCE LEARNING(ODL) PROGRAMMES
(FOR THOSE WHO JOINED THE PROGRAMMES FROM THE ACADEMIC YEAR 2023–2024)

III YEAR

B.Sc. Physics
Course Material

Python Programming and Basics of AI & Data

Science

Prepared

By

Dr. S. Shailajha

Dr. P. Hema

Assistant Professor

Department of Physics

Manonmaniam Sundaranar University

 Tirunelveli – 12

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

PYTHON PROGRAMMING AND BASICS OF AI & DATA SCIENCE

UNIT I: BASICS

Python introduction – Tokens: literals, Variables, Reserved Words, Operators, Delimiters and

Escape sequences – Standard Data Types – Expressions – Comments in Python – Input and

Output functions – Simple Physics formula-based programming in Python.

UNIT II: CONTROL STATEMENTS

Control Flow Statements and Syntax with examples – Looping statements – String

operations – LISTS: List – list slices – list Methods – list loop – Tuples assignment – sets –

Dictionaries.

UNIT III: FUNCTIONS

Definition and types – Passing parameters to a Function – Scope – Type conversion – Passing

Functions to a Function – Modules – Standard Modules – Inbuilt Function – Scope of

Variables.

UNIT IV: OBJECT ORIENTED FEATURES

Introduction –Defining Classes – Public and Private Data member – Creating Object –

Accessing class members – Using Objects. Constructors – Destructors – Introduction of simple

Inheritance – Introduction of simple Polymorphism.

ERROR HANDLING: Run Time Errors – Exception Model.

UNIT V: ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Introduction – History of AI – Applications of AI – Defining Algorithm – A* Algorithm.

DATA SCIENCE: Introduction – Defining Data, Information and Data structure – Basic

Concept of Probability and Statistics.

TEXT BOOKS

1. Fundamental of Pythons – First Program by Kenneth A. Lambert.

2. Python Programming – A modular approach by Pearson – Sheetal Taneja.

3. Handson AI for beginners by Patric D. Smith.

4. Introduction to Data Science by Dr. Sushil Dohare, Dr. V. Selva Kumar Sachin Raval.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

UNIT I: BASICS

Python introduction – Tokens: literals, Variables, Reserved Words, Operators, Delimiters and

Escape sequences – Standard Data Types – Expressions – Comments in Python – Input and

Output functions – Simple Physics formula-based programming in Python.

1.1 PYTHON INTRODUCTION

 Python is a high-level scripting language which can be used for a wide variety of text

processing, system administration and internet-related tasks. Unlike many similar languages,

its core language is very small and easy to master, while allowing the addition of modules to

perform a virtually limitless variety of tasks. Python is a true object-oriented language, and is

available on a wide variety of platforms. There’s even a python interpreter written entirely in

Java, further enhancing python’s position as an excellent solution for internet-based problems.

 Python was developed in the early 1990’s by Guido van Rossum, then at CWI in

Amsterdam, and currently at CNRI in Virginia. In some ways, python grew out of a project to

design a computer language which would be easy for beginners to learn, yet would be powerful

enough for even advanced users. This heritage is reflected in python’s small, clean syntax and

the thoroughness of the implementation of ideas like object-oriented programming, without

eliminating the ability to program in a more traditional style. So, python is an excellent choice

as a first programming language without sacrificing the power and advanced capabilities that

users will eventually need. Although pictures of snakes often appear on python books and

websites, the name is derived from Guido van Rossum’s favourite TV show, “Monty Python’s

Flying Circus”. For this reason, lots of online and print documentation for the language has a

light and humorous touch. Interestingly, many experienced programmers report that python

has brought back a lot of the fun they used to have programming, so van Rossum’s inspiration

may be well expressed in the language itself.

PYTHON VERSIONS

• Python 1.0

• Python 2.0

• Python 3.0

PYTHON FEATURES

• Easy to learn, easy to read and easy to maintain.

 Python Programming and Basics of AI & Data Science

 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

• Portable: It can run on various hardware platforms and has the same interface on all

platforms.

• Extendable: You can add low-level modules to the Python interpreter.

• Scalable: Python provides a good structure and support for large programs. Python has

support for an interactive mode of testing and debugging.

• Python has a broad standard library cross-platform.

• Everything in Python is an object: variables, functions, even code. Every object has an

ID, a type, and a value.

• Python provides interfaces to all major commercial databases.

• Python supports functional and structured programming methods as well as OOP.

• Python provides very high-level dynamic data types and supports dynamic type

checking.

• Python supports GUI applications

• Python supports automatic garbage collection.

• Python can be easily integrated with C, C++, and Java.

APPLICATIONS OF PYTHON

• Machine Learning

• GUI Applications (like Kivy, Tkinter, PyQt etc.)

• Web frameworks like Django (used by YouTube, Instagram, Dropbox)

• Image processing (like OpenCV, Pillow)

• Web scraping (like Scrapy, BeautifulSoup, Selenium)

• Test frameworks

• Multimedia

• Scientific computing

• Text processing

1.2 TOKENS IN PYTHON

 In Python, when you write a code, the interpreter needs to understand what each part

of your code does. Tokens are the smallest units of code that have a specific purpose or

meaning. Each token, like a keyword, variable name, or number, has a role in telling the

computer what to do.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

For Example, let’s break down a simple Python code example into tokens:

Example Python code

variable = 5 + 3

print ("Result: ", variable)

Now, let’s identify the tokens in this code:

• Keywords (like ‘if’ or ‘while’) tell the computer about decision-making or loops.

• Variable names (identifiers) are like labels for storing information.

• Numbers and text (literals) represent actual values.

• Operators (like + or –) are symbols that perform actions on values.

When the interpreter reads and processes these tokens, it can understand the instructions in your code

and carry out the intended actions. The combination of different tokens creates meaningful instructions

for the computer to execute. Tokens are generated by the Python tokenizer, after reading the source

code of a Python program. It breaks, the code into smaller parts. The tokenizer ignores

whitespace and comments and returns a token sequence to the Python parser. The Python parser

then uses the tokens to construct a parse tree, showing the program’s structure. The parse tree

is then used by the Python interpreter to execute the program.

Types of Tokens:

 When working with the Python language, it is important to understand the different types of

tokens that make up the language. Python has different types of Tokens, including literals, variables,

reserved Words, operators, delimiters and escape sequences. Each token type fulfills a specific

function and plays an important role in the execution of a Python script.

1.Literals:

 Literals are constant values that are directly specified in the source code of a program. They

represent fixed values that do not change during the execution of the program. Python supports various

types of literals, including string literals, numeric literals, boolean literals, and special literals such as

None.

Numeric literals can be integers, floats, or complex numbers. Integers are whole numbers without a

fractional part, while floats are numbers with a decimal point. Complex numbers consist of a real part

and an imaginary part, represented as “x + yj’’, where “x” is the real part and “y” is the imaginary part.

String literals are sequences of characters enclosed in single quotes (”) or double quotes (“”). They can

contain any printable characters, including letters, numbers, and special characters. Python also supports

triple-quoted strings, which can span multiple lines and are often used for docstrings, multi-line

comments, or multi-line strings.

https://intellipaat.com/blog/python-complex-numbers/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Boolean literals represent the truth values “True” and “False’’. They are used in logical expressions

and control flow statements to make decisions based on certain conditions. Boolean literals are often

the result of comparison or logical operations.

Special literals include None, which represents the absence of a value or the null value. It is often used

to indicate that a variable has not been assigned a value yet or that a function does not return anything.

2. Variables:
 Variables are nothing but reserved memory locations to store values. This means that

when you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can be

stored in the reserved memory. Therefore, by assigning different data types to variables, you

can store integers, decimals or characters in these variables.

Rules for Python variables:
 • A variable name must start with a letter or the underscore character

 • A variable name cannot start with a number

 • A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9,

and _)

 • Variable names are case-sensitive (age, Age and AGE are three different variables)

Assigning Values to Variables:
 Python variables do not need explicit declaration to reserve memory space. The declaration

happens automatically when you assign a value to a variable. The equal sign (=) is used to assign values

to variables. The operand to the left of the = operator is the name of the variable and the operand to the

right of the = operator is the value stored in the variable

For example −

a= 100 # An integer assignment

b = 1000.0 # A floating point

c = "John" # A string

print (a)

print (b)

print (c)

This produces the following result −

100

1000.0

John

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Multiple Assignment:

Python allows you to assign a single value to several variables simultaneously.

For example:

a = b = c = 1

Here, an integer object is created with the value 1, and all three variables are assigned to the same

memory location. You can also assign multiple objects to multiple variables.

For example −

a, b, c = 1,2,"mrcet “

To combine both text and a variable, Python uses the “+” character:

Example

x = "awesome" print ("Python is " + x)

Output

Python is awesome

You can also use the + character to add a variable to another variable:

Example

x = "Python is " y = "awesome" z = x + y print(z)

Output:

Python is awesome

3. Reserved Words: (Keywords)

 Keywords are reserved words in Python that have a special meaning and are used to

define the syntax and structure of the language. These words cannot be used as identifiers for

variables, functions, or other objects. Python has a set of 35 keywords, each serving a specific

purpose in the language.

There are 35 keywords in Python 3.11. They are:

and as assert async continue

else if not while def

except import or with del

finally in pass yield elif

for is raise await false

from lambda return break none

global nonlocal try class true

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

4. Operators:

 Operators are like little helpers in Python, using symbols or special characters to carry out

tasks on one or more operands. Python is generous with its operators, offering a diverse set.

These include the everyday arithmetic operators, those for assignments, comparison operators,

logical operators, identity operators, membership operators, and even those for handling bits.

Type of Operator Description Example

Arithmetic

Operators

Perform mathematical operations such as addition, subtraction,

multiplication, division, modulus, and exponentiation.

+, -, *, /,

%, **

Assignment

Operators

Assign values to variables, including the equal sign and

compound assignment operators.

=, +=, -=,

*=, /=, %=

Comparison

Operators

Compare two values and return a boolean (True or False) based

on the comparison.

==, !=, >,

<, >=, <=

Logical

Operators

Combine conditions and perform logical operations like AND,

OR, and NOT.

and, or,

not

Identity

Operators

Compare the memory addresses of objects to check if they are the

same or different.

is, is not

Membership

Operators

Test if a value is present in a sequence (e.g., list, tuple, string). in, not in

Bitwise

Operators

Perform bit-level operations on binary numbers, allowing

manipulation of individual bits.

&

5.Delimiters:

 Delimiters are characters or symbols used to separate or mark the boundaries of

different elements in Python code. They are used to group statements, define function or class

bodies, enclose string literals, and more. Python uses various delimiters, including parentheses

‘()’, commas ‘,’, brackets ‘[]’, braces ‘{}’, colons ‘:’, and semicolons.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Punctuation

Mark

Usage

Parentheses Define function arguments, control the order of operations, and create tuples.

Brackets Create lists, which are mutable sequences of values.

Braces Define sets (unordered collections of unique elements) and dictionaries (key-

value pairs).

Commas Separate elements in tuples, lists, sets, and dictionaries. It is also used to

separate function arguments and create multiple variable assignments.

Colons Define the body of control flow statements like if, else, for, while, and def.

Semicolons Separate multiple statements on a single line for brevity or to combine related

statements.

6. Escape sequences:

 Specifying a backslash (\) in front of the quote character in a string“escapes” it

and causes Python to suppress its usual special meaning. It is then interpreted simply as

a literal single quote character:

>>> print("mrcet is an autonomous (\') college")

mrcet is an autonomous (') college

>>> print('mrcet is an autonomous (\") college')

mrcet is an autonomous (") college

The following is a table of escape sequences which cause Python to suppress the usual

special interpretation of a character in a string:

>>> print('a\

....b')

a....b

>>> print('a\

24

b\

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

c')

abc

>>> print('a \n b')

a

b

>>> print("mrcet \n college")

mrcet

college Escape

Sequence

Usual Interpretation of

Character(s) After Backslash

“Escaped” Interpretation

\' Terminates string with single

quote opening delimiter

Literal single quote (') character

\" Terminates string with double

quote opening delimiter

Literal double quote (")

character

\newline Terminates input line Newline is ignored

\\ Introduces escape sequence Literal backslash (\) character

In Python (and almost all other common computer languages), a tab character can be

specified by the escape sequence \t:

>>> print("a\tb")

a b

1.3. STANDARD DATA TYPES:

 Data types in Python are a way to classify data items. They represent the kind of

value, which determines what operations can be performed on that data. Since everything is an

object in Python programming, Python data types are classes and variables are instances

(objects) of these classes.

The following are standard or built-in data types in Python:

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

• Numeric: int, float, complex

• Sequence Type: string, list, tuple

• Mapping Type: dict

• Boolean: bool

• Set Type: set, frozenset

• Binary Types: bytes, bytearray, memoryview

1. Numeric Data Types

 Python numbers represent data that has a numeric value. A numeric value can be an

integer, a floating number or even a complex number. These values are defined as int, float and

complex classes.

• Integers: value is represented by int class. It contains positive or negative whole

numbers (without fractions or decimals). There is no limit to how long an integer value

can be.

• Float: value is represented by float class. It is a real number with a floating-point

representation. It is specified by a decimal point. Optionally, character e or E followed

by a positive or negative integer may be appended to specify scientific notation.

• Complex Numbers: It is represented by a complex class. It is specified as (real part) +

(imaginary part)j. For example - 2+3j

a = 5

print(type(a))

b = 5.0

https://www.geeksforgeeks.org/python/python-int-function/
https://www.geeksforgeeks.org/python/python-float-type-and-its-methods/
https://www.geeksforgeeks.org/python/python-complex-function/
https://www.geeksforgeeks.org/python/python-string/
https://www.geeksforgeeks.org/python/python-lists/
https://www.geeksforgeeks.org/python/python-tuples/
https://www.geeksforgeeks.org/python/python-dictionary/
https://www.geeksforgeeks.org/python/boolean-data-type-in-python/
https://www.geeksforgeeks.org/python/python-sets/
https://www.geeksforgeeks.org/python/frozenset-in-python/
https://www.geeksforgeeks.org/python/python-bytes-method/
https://www.geeksforgeeks.org/python/python-bytearray-function/
https://www.geeksforgeeks.org/python/memoryview-in-python/
https://www.geeksforgeeks.org/python/python-numbers/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

print(type(b))

c = 2 + 4j

print(type(c))

Output

<class 'int'>

<class 'float'>

<class 'complex'>

2. Sequence Data Types
 A sequence is an ordered collection of items, which can be of similar or different data

types. Sequences allow storing of multiple values in an organized and efficient fashion. There

are several sequence data types of Python:

String Data Type:

Python Strings are arrays of bytes representing Unicode characters. In Python, there is no

character data type, a character is a string of length one. It is represented by str class. Strings

in Python can be created using single quotes, double quotes or even triple quotes. We can

access individual characters of a String using index.

s = 'Welcome to the Geeks World'

print(s)

check data type

print(type(s))

access string with index

print(s[1])

print(s[2])

print(s[-1])

Output

Welcome to the Geeks World

<class 'str'>

e

l

d

List Data Type:
Lists are similar to arrays found in other languages. They are an ordered and mutable collection

of items. It is very flexible as items in a list do not need to be of the same type.

Creating a List in Python:

Lists in Python can be created by just placing sequence inside the square brackets[].

Empty list

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

a = []

list with int values

a = [1, 2, 3]

print(a)

list with mixed values int and String

b = ["Geeks", "For", "Geeks", 4, 5]

print(b)

Output

[1, 2, 3]

['Geeks', 'For', 'Geeks', 4, 5]

Access List Items:

In order to access the list items refer to index number. In Python, negative sequence indexes

represent positions from end of the array. Instead of having to compute offset as in

List[len(List)-3], it is enough to just write List[-3]. Negative indexing means beginning from

end, -1 refers to last item, -2 refers to second-last item, etc.

a = ["Geeks", "For", "Geeks"]

print("Accessing element from the list")

print(a[0])

print(a[2])

print("Accessing element using negative indexing")

print(a[-1])

print(a[-3])

Output

Accessing element from the list

Geeks

Geeks

Accessing element using negative indexing

Geeks

Geeks

Tuple Data Type:

 Tuple is an ordered collection of Python objects. The only difference between a tuple and

a list is that tuples are immutable. Tuples cannot be modified after it is created.

Creating a Tuple in Python:

 In Python, tuples are created by placing a sequence of values separated by a ‘comma’

with or without the use of parentheses for grouping data sequence. Tuples can contain any

number of elements and of any datatype (like strings, integers, lists, etc.).

initiate empty tuple

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

tup1 = ()

tup2 = ('Geeks', 'For')

print("\nTuple with the use of String: ", tup2)

Output

Tuple with the use of String: ('Geeks', 'For')

Access Tuple Items:

In order to access tuple items refer to the index number. Use the index operator [] to access an

item in a tuple.

tup1 = (1, 2, 3, 4, 5)

access tuple items

print(tup1[0])

print(tup1[-1])

print(tup1[-3])

Output

1

5

3

3. Boolean Data Type:
 Python Boolean Data type is one of the two built-in values, True or False. Boolean

objects that are equal to True are truthy (true) and those equal to False are falsy (false).

However non-Boolean objects can be evaluated in a Boolean context as well and determined

to be true or false. It is denoted by class bool.

print(type(True))

print(type(False))

print(type(true))

Output

<class'bool'>

<class 'bool'>

Traceback(mostrecentcalllast):

File"/home/7e8862763fb66153d70824099d4f5fb7.py",line8,in

print(type(true))

NameError: name 'true' is not defined

Truthy and Falsy Values:
 In Python, truthy and falsy values are values that evaluate to True or False in a Boolean

context. Truthy values behave like True, while falsy values behave like False when used in

conditions.

https://www.geeksforgeeks.org/python/boolean-data-type-in-python/
https://www.geeksforgeeks.org/python/truthy-vs-falsy-values-in-python/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

if 1:

 print("1 is truthy")

if not 0:

 print("0 is falsy")

Output

1 is truthy

0 is falsy

4. Set Data Type:
 In Python Data Types, Set is an unordered collection of data types that is iterable,

mutable, and has no duplicate elements. The order of elements in a set is undefined though it

may consist of various elements.

Create a Set in Python:

 Sets can be created by using the built-in set() function with an iterable object or a

sequence by placing the sequence inside curly braces, separated by a ‘comma’. The type of

elements in a set need not be the same, various mixed-up data type values can also be passed

to the set.

initializing empty set

s1 = set()

s1 = set("GeeksForGeeks")

print("Set with the use of String: ", s1)

s2 = set(["Geeks", "For", "Geeks"])

print("Set with the use of List: ", s2)

Output

Set with the use of String: {'s', 'o', 'F', 'G', 'e', 'k', 'r'}

Set with the use of List: {'Geeks', 'For'}

Access Set Items:

 Set items cannot be accessed by referring to an index, since sets are unordered the items

have no index. But we can loop through the set items using a for loop, or ask if a specified

value is present in a set, by using the keyword in.

set1 = set(["Geeks", "For", "Geeks"]) #Duplicates are removed automatically

print(set1)

loop through set

for i in set1:

 print(i, end=" ") #prints elements one by one

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

check if item exist in set

print("Geeks" in set1)

Output

{'For', 'Geeks'}

For Geeks True

5. Dictionary Data Type:
 A dictionary in Python is a collection of data values, used to store data values like a

map, unlike other Python Data Types, a Dictionary holds a key: value pair. Key-value is

provided in dictionary to make it more optimized. Each key-value pair in a Dictionary is

separated by a colon : , whereas each key is separated by a ‘comma’.

Create a Dictionary in Python:

 Values in a dictionary can be of any datatype and can be duplicated, whereas keys can’t

be repeated and must be immutable. The dictionary can also be created by the built-in

function dict().

initialize empty dictionary

d = {}

d = {1: 'Geeks', 2: 'For', 3: 'Geeks'}

print(d)

creating dictionary using dict() constructor

d1 = dict({1: 'Geeks', 2: 'For', 3: 'Geeks'})

print(d1)

Output

{1: 'Geeks', 2: 'For', 3: 'Geeks'}

{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Accessing Key-value in Dictionary:

 In order to access items of a dictionary refer to its key name. Key can be used inside

square brackets. Using get() method we can access dictionary elements.

d = {1: 'Geeks', 'name': 'For', 3: 'Geeks'}

Accessing an element using key

print(d['name'])

Accessing a element using get

print(d.get(3))

Output

For

Geeks

https://www.geeksforgeeks.org/python/python-dictionary/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

1.4. EXPRESSIONS:

 An expression is a combination of values, variables, and operators. If you type an

expression on the command line, the interpreter evaluates it and displays the result:

>>> 1 + 1

2

The evaluation of an expression produces a value, which is why expressions can appear on the

right hand side of assignment statements. A value all by itself is a simple expression, and so is

a variable.

Confusingly, evaluating an expression is not quite the same thing as printing a value.

>>> message = "What’s your name?"

>>> message

"What’s your name?"

>>> print(message)

What’s your name?

When the Python shell displays the value of an expression, it uses the same format you would

use to enter a value. In the case of strings, that means that it includes the quotation marks. But

the print statement prints the value of the expression, which in this case is the contents of the

string. In a script, an expression all by itself is a legal statement, but it doesn’t do anything. The

script

17

3.2

"Hello, World!" 1 + 1

produces no output at all.

1.5. PYTHON COMMENTS:

Comments in Python are the lines in the code that are ignored by the interpreter during the

execution of the program.

• Comments enhance the readability of the code.

• Comment can be used to identify functionality or structure the code-base.

• Comment can help understanding unusual or tricky scenarios handled by the code to

prevent accidental removal or changes.

• Comments can be used to prevent executing any specific part of your code, while

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

print("Python Comments") """

Comments in Python

In Python, single line comments start with hashtag symbol #.

sample comment

name = "geeksforgeeks"

print(name)

Output

geeksforgeeks

Multi-Line Comments

Python does not provide the option for multiline comments. However, there are different ways

through which we can write multiline comments.

Multiline comments using multiple hashtags (#)

We can multiple hashtags (#) to write multiline comments in Python. Each and every line will

be considered as a single-line comment.

Python program to demonstrate

multiline comments

print("Multiline comments")

Using String Literals as Comment

Python ignores the string literals that are not assigned to a variable. So, we can use these string

literals as Python Comments.

'Single-line comments using string literals'

""" Python program to demonstrate

 multiline comments"""

print("Multiline comments")

Best Practice to Write Comments

These are some of the tips you can follow, to make your comments effective are:

1. Comments should be short and precise.

2. Use comments only, when necessary, don't clutter your code with comments.

3. Avoid writing generic or basic comments.

4. Write comments that are self-explanatory.

https://www.geeksforgeeks.org/python/multiline-comments-in-python/
https://www.geeksforgeeks.org/python/literals-in-python/#:~:text=What%20is%20String%20literals

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

1.6. INPUT AND OUTPUT FUNCTIONS:

 Understanding input and output operations is fundamental to Python programming.

With the print() function, we can display output in various formats, while the input() function

enables interaction with users by gathering input during program execution.

Taking input in Python

Python's input() function is used to take user input. By default, it returns the user input in form

of a string.

Example:

name = input("Enter your name: ")

print("Hello,", name, "! Welcome!")

Output

Enteryourname:GeeksforGeeks

Hello, GeeksforGeeks ! Welcome!

The code prompts the user to input their name, stores it in the variable "name" and then prints

a greeting message addressing the user by their entered name.

Printing Output using print() in Python

At its core, printing output in Python is straightforward, thanks to the print() function. This

function allows us to display text, variables and expressions on the console. Let's begin with

the basic usage of the print() function:

In this example, "Hello, World!" is a string literal enclosed within double quotes. When

executed, this statement will output the text to the console.

print("Hello, World!")

Output:

Hello, World!

Printing Variables

We can use the print() function to print single and multiple variables. We can print multiple

variables by separating them with commas. Example:

s = "Bob"

print(s)

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

s = "Alice"

age = 25

city = "New York"

print(s, age, city)

Output:

Bob

Alice 25 New York

Take Multiple Input in Python

We are taking multiple input from the user in a single line, splitting the values entered by the

user into separate variables for each value using the split() method. Then, it prints the values

with corresponding labels, either two or three, based on the number of inputs provided by the

user.

x, y = input("Enter two values: ").split()

print("Number of boys: ", x)

print("Number of girls: ", y)

 x, y, z = input("Enter three values: ").split()

print("Total number of students: ", x)

print("Number of boys is : ", y)

print("Number of girls is : ", z)

Output

Enter two values:5 10

Number of boys: 5

Number of girls: 10

Enter three values: 5 10 15

Total number of students: 5

Number of boys is : 10

Number of girls is : 15

Change the Type of Input in Python

By default input() function helps in taking user input as string. If any user wants to take input

https://www.geeksforgeeks.org/python/python-string-split/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

as int or float, we just need to typecast it.

Print Names in Python

The code prompts the user to input a string (the color of a rose), assigns it to the variable color

and then prints the inputted color.

color = input("What color is rose?: ")

print(color)

Output

What color is rose?: Red

Red

Print Numbers in Python

The code prompts the user to input an integer representing the number of roses, converts the

input to an integer using typecasting and then prints the integer value.

n = int(input("How many roses?: "))

print(n)

Output

How many roses?: 88

88

Print Float or Decimal Number in Python

The code prompts the user to input the price of each rose as a floating-point number, converts

the input to a float using typecasting and then prints the price.

price = float(input("Price of each rose?: "))

print(price)

Output

Price of each rose?: 50.3050.3

50.3050.3

Find DataType of Input in Python

In the given example, we are printing the type of variable x. We will determine the type of an

object in Python.

a = "Hello World"

b = 10

https://www.geeksforgeeks.org/python/type-casting-in-python/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

c = 11.22

d = ("Geeks", "for", "Geeks")

e = ["Geeks", "for", "Geeks"]

f = {"Geeks": 1, "for":2, "Geeks":3}

print(type(a))

print(type(b))

print(type(c))

print(type(d))

print(type(e))

print(type(f))

Output

<class 'str'>

<class 'int'>

<class 'float'>

<class 'tuple'>

<class 'list'>

<class 'dict'>

1.7. SIMPLE PHYSICS FORMULA-BASED PROGRAMMING IN PYTHON:

Here we can find the acceleration (a), final velocity(v), initial velocity(u) and time(t) using the

formula a = (v-u)/t.

At first, functions are defined for all four types of calculations, in which they will accept three

inputs and assign the value in three different variables. Then the fourth value is calculated using

the acceleration formula and the calculated value is returned. We are going to use the same

acceleration formula in different approaches.

Approach:

• In the first approach, we will find initial velocity by using the formula "u = (v-a*t)"

• In the second approach, we will find final velocity by using formula "v = u + a*t"

• In the third approach, we will find acceleration by using formula "a = (v - u)/t"

• In the fourth approach, we will find time by using formula "t = (v - v)/a"

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Example 1: Initial velocity (u) is calculated.

code

Enter final velocity in m/s:

finalVelocity = 10

Enter acceleration in m per second square

acceleration = 9.8

#Enter time taken in second

time = 1

initialVelocity = finalVelocity - acceleration * time

print("Initial velocity = ", initialVelocity)

Output:

Initial velocity = 0.1999999999999993

Example 2: Final velocity (v) is calculated.

code

initial velocity in m/s:

initialVelocity = 10

acceleration in m per second square

acceleration = 9.8

time taken in second

time = 1

finalVelocity = initialVelocity + acceleration * time

print("Final velocity = ", finalVelocity)

Output:

Final velocity = 19.8

Example 3: Acceleration (a) is calculated.

#code

initial velocity in m/s

initialVelocity = 0

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

final velocity in m/s

finalVelocity = 9.8

time in second

time = 1

acceleration = (finalVelocity - initialVelocity) / time

print("Acceleration = ", acceleration)

Output:

Acceleration = 9.8

Example 4: Time (t) is calculated.

code

#final velocity in m/s

finalVelocity = 10

#initial velocity in m/s

initialVelocity = 0

#acceleration in meter per second square

acceleration = 9.8

time = (finalVelocity - initialVelocity) / acceleration

print("Time taken = ", time)

Output:

Time taken = 1.0204081632653061

Problem:

Questions based on the equation, v = u + at

A cyclist speeds up at a constant rate from rest to 8 m/s in 6s. Find the acceleration of the

cyclist.

Solution:

u = 0 m/s [body starts from rest]

v = 8 m/s

t = 6 s

We know: v = u + at

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

=> a = (v-u)/t = (8–0)/6 = 4/3 m/s2 = 1.33 m/s²

Code

Output:

Explanation of the above code

In this code, we are trying to find the acceleration of a cyclist. Let me break it down step by

step:

1. The code starts with a while True: loop, which means it will keep running forever until

we stop it manually. Inside this loop, we will ask the user to input three values:

2. a. u: This is the initial velocity of the cyclist. b. v: This is the final velocity of the cyclist.

c. t: This is the elapsed time in seconds spent by the cyclist.

3. After getting the input values from the user, the code calculates the acceleration of the

cyclist using the formula:

4. acceleration (a) = (final velocity (v) - initial velocity (u)) / elapsed time (t)

5. Then, it prints the calculated acceleration with two decimal places using the line:

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

6. Print ('The acceleration of the cyclist: %.2f ' %a)

7. The code then adds an extra newline for better formatting using:

8. print('\n')

9. After displaying the result, the loop restarts, and the process repeats, asking the user for

new values to calculate the acceleration again.

This code allows you to find the acceleration of the cyclist by providing the initial velocity,

final velocity, and elapsed time. Remember that acceleration measures how fast the velocity of

an object changes over time.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

UNIT II: CONTROL STATEMENTS

Control Flow Statements and Syntax with examples – Looping statements – String

operations – LISTS: List – list slices – list Methods – list loop – Tuples assignment – sets –

Dictionaries.

2.1. CONTROL FLOW STATEMENTS:

A statement is an instruction that the Python interpreter can execute. We have normally two

basic statements, the assignment statement and the print statement. Some other kinds of

statements that are if statements, while statements, and for statements generally called as

control flows.

Control Flow Statements in Python are fundamental building blocks that dictate the execution

order of a program. They enable developers to create logical pathways and make decisions in

their code, using structures like if, for, and while.

These statements are essential for adding complexity and functionality to Python scripts,

allowing for conditional execution and repetitive tasks. This introduction will briefly explore

how these control flow mechanisms enhance the versatility and efficiency of Python

programming.

The flow control statements are divided into three categories

1. Conditional statements

2. Iterative statements.

3. Transfer statements

Conditional statements:

In Python, condition statements act depending on whether a given condition is true or false.

You can execute different blocks of codes depending on the outcome of a condition. Condition

statements always evaluate to either True or False.

There are three types of conditional statements.

1. if statement

2. if-else

3. if-elif-else

4. nested if-else

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Python control flow statements

Iterative statements

In Python, iterative statements allow us to execute a block of code repeatedly as long as the

condition is True. We also call it a loop statements. Python provides us the following two loop

statement to perform some actions repeatedly

1. for loop

2. while loop

Transfer statements

In Python, transfer statements are used to alter the program’s way of execution in a certain

manner. For this purpose, we use three types of transfer statements.

1. break statement

2. continue statement

3. pass statements

If statement in Python

In control statements, The if statement is the simplest form. It takes a condition and evaluates

to either True or False. If the condition is True, then the True block of code will be executed,

and if the condition is False, then the block of code is skipped, and The controller moves to

https://pynative.com/python-for-loop/
https://pynative.com/python-while-loop/
https://pynative.com/python-break-continue-pass/
https://pynative.com/python-break-continue-pass/#h-break-statement-in-python
https://pynative.com/python-break-continue-pass/#h-continue-statement-in-python

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

the next line

Syntax of the if statement

 if condition:

 statement 1

 statement 2

 statement n

Example

number = 6

if number > 5:

 # Calculate square

 print(number * number)

print('Next lines of code')

 Run

Output

36

Next lines of code

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

If – else statement

The if-else statement checks the condition and executes the if block of code when the condition

is True, and if the condition is False, it will execute the else block of code.

Syntax of the if-else statement

if condition:

 statement 1

else:

 statement 2

If the condition is True, then statement 1 will be executed If the condition is False, statement 2

will be executed. See the following flowchart for more detail.

Example

password = input('Enter password ')

if password == "PYnative@#29":

 print("Correct password")

else:

 print("Incorrect Password")

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Output 1:

Enter password PYnative@#29

Correct password

Output 2:

Enter password PYnative

Incorrect Password

Chain multiple if statement in Python

In Python, the if-elif-else condition statement has an elif blocks to chain multiple conditions

one after another. This is useful when you need to check multiple conditions.

With the help of if-elif-else we can make a tricky decision. The elif statement checks multiple

conditions one by one and if the condition fulfills, then executes that code.

Syntax of the if-elif-else statement:

if condition-1:

 statement 1

elif condition-2:

 stetement 2

elif condition-3:

 stetement 3

 ...

else:

 statement

Example

def user_check(choice):

 if choice == 1:

 print("Admin")

 elif choice == 2:

 print("Editor")

 elif choice == 3:

 print("Guest")

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 else:

 print("Wrong entry")

user_check(1)

user_check(2)

user_check(3)

user_check(4)

Output:

Admin

Editor

Guest

Wrong entry

Nested if-else statement

 In Python, the nested if-else statement is an if statement inside another if-else statement.

It is allowed in Python to put any number of if statements in another if statement. Indentation

is the only way to differentiate the level of nesting. The nested if-else is useful when we want

to make a series of decisions.

Syntax of the nested-if-else:

if conditon_outer:

 if condition_inner:

 statement of inner if

 else:

 statement of inner else:

 statement ot outer if

else:

 Outer else

statement outside if block

Example: Find a greater number between two numbers

num1 = int(input('Enter first number '))

num2 = int(input('Enter second number '))

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

if num1 >= num2:

 if num1 == num2:

 print(num1, 'and', num2, 'are equal')

 else:

 print(num1, 'is greater than', num2)

else:

 print(num1, 'is smaller than', num2)

Output 1:

Enter first number 56

Enter second number 15

56 is greater than 15

Output 2:

Enter first number 29

Enter second number 78

29 is smaller than 78

Single statement suites

Whenever we write a block of code with multiple if statements, indentation plays an important

role. But sometimes, there is a situation where the block contains only a single line statement.

Instead of writing a block after the colon, we can write a statement immediately after the colon.

Example

number = 56

if number > 0: print("positive")

else: print("negative")

Similar to the if statement, while loop also consists of a single statement, we can place that

statement on the same line.

Example

x = 1

while x <= 5: print(x,end=" "); x = x+1

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Output

1 2 3 4 5

for loop in Python

Using for loop, we can iterate any sequence or iterable variable. The sequence can be

string, list, dictionary, set, or tuple.

Syntax of for loop:

for element in sequence:

body of for loop

Example to display first ten numbers using for loop

for i in range(1, 11):

 print(i)

 Run

Output

1

2

3

4

https://pynative.com/python-lists/
https://pynative.com/python-dictionaries/
https://pynative.com/python-sets/
https://pynative.com/python-tuples/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

5

6

7

8

9

10

While loop in Python

In Python, the while loop statement repeatedly executes a code block while a particular

condition is true. In a while-loop, every time the condition is checked at the beginning of the

loop, and if it is true, then the loop’s body gets executed. When the condition became False,

the controller comes out of the block.

Syntax of while-loop

while condition :

 body of while loop

Example to calculate the sum of first ten numbers

num = 10

sum = 0

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

i = 1

while i <= num:

 sum = sum + i

 i = i + 1

print("Sum of first 10 number is:", sum)

 Run

Output

Sum of first 10 number is: 55

Break Statement in Python

The break statement is used inside the loop to exit out of the loop. It is useful

when we want to terminate the loop as soon as the condition is fulfilled instead

of doing the remaining iterations. It reduces execution time. Whenever the

controller encountered a break statement, it comes out of that loop immediately

Let’s see how to break a for a loop when we found a number greater than 5.

Example of using a break statement

for num in range(10):

 if num > 5:

 print("stop processing.")

 break

 print(num)

 Run

Output

0

1

2

3

4

5

stop processing.

https://pynative.com/python-break-continue-pass/#h-break-statement-in-python

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Continue statement in python

The continue statement is used to skip the current iteration and continue with the next iteration.

Let’s see how to skip a for a loop iteration if the number is 5 and continue executing the body

of the loop for other numbers.

Example of a continue statement

for num in range(3, 8):

 if num == 5:

 continue

 else:

 print(num)

 Run

Output

3

4

6

7

Pass statement in Python

The pass is the keyword In Python, which won’t do anything. Sometimes there is a situation in

programming where we need to define a syntactically empty block. We can define that block

with the pass keyword.

A pass statement is a Python null statement. When the interpreter finds a pass statement in the

program, it returns no operation. Nothing happens when the pass statement is executed.

It is useful in a situation where we are implementing new methods or also in exception

handling. It plays a role like a placeholder.

Example

months = ['January', 'June', 'March', 'April']

for mon in months:

 pass

print(months)

https://pynative.com/python-break-continue-pass/#h-continue-statement-in-python
https://pynative.com/python-break-continue-pass/#h-pass-statement-in-python

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 Run

Output

['January', 'June', 'March', 'April']

2.2. LOOPING STATEMENTS:

In Python, looping statements are control structures that allow a block of code to run

repeatedly, either for a specific number of times or until a certain condition is met.

Types of Loops in Python:

Python gives us two primary ways to repeat actions each with its own style and use case. Let’s

break them down:

1. The for Loop

The for loop in Python is used when you want to repeat a block of code for each item in a

sequence (like a list, string, or range of numbers). Unlike some other languages,

Python’s for loop is more like a “for-each” loop—it directly iterates over items.

• Best used when you know in advance how many times you want to repeat something,

or when you’re iterating over a collection (like a list, string, or dictionary).

• Example: Looping through a list of names or printing numbers from 1 to 10.

Syntax:

for variable in sequence:

code to be executed

• variable → takes each value from the sequence one by one.

• sequence → can be a list, tuple, string, or even a range()

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Sample code: Loop through a list

Sample code: Loop through a list

fruits = ["apple", "banana", "cherry"]

for fruit in fruits:

 print("I like", fruit)

Expected Output:

I like apple

I like banana

I like cherry

The range() Function

Most of the time, you’ll use range() with a for loop when you want to repeat something a

specific number of times.

2. The while Loop:

A while loop is used when you want to keep executing a block of code as long as a certain

condition is true. Unlike the for loop, which runs for a fixed number of iterations,

the while loop is controlled by a condition.

• Best used when you don’t know exactly how many times the code should run, but you

do know the condition that controls when it should stop.

• Example: Asking a user for input until they type the correct password.

Syntax:

while condition:

code to be executed

• The loop continues to run as long as the condition evaluates to True.

• If the condition becomes False, the loop stops.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Sample Code: User Input Until Correct Password

Sample code: While loop for password checking

password = ""

while password != "python123":

 password = input("Enter password: ")

print("Access granted!")

Expected Output:

Enter password: python

Enter password: python@123

Enter password: python123

Access granted!

2.3. STRING OPERATIONS:

Strings are an essential part of Python used to handle text data. We can create them using single,

double, or triple quotes. Strings help store names, sentences, or any sequence of characters in

a program. Strings in Python support various operations like slicing, indexing, concatenation,

and formatting, making it easy to manage and modify text. In this, we will learn using the

example of a string in Python for better understanding.

Working with Strings in Python:

We need to place the sequence of letters within single quotes or double quotes to create a string

and assign it to a variable. There is also an option of giving variables a string of characters or

different characters. We can assign sequences of single and double quotes.

1. Creating a String in Python:

In Python, we create a string by placing text inside single (') or double (") quotes. This is the

basic way we define short messages or names. For longer or multi-line text, we use triple quotes

(''' or """). These are helpful when writing docstrings or storing paragraphs. Strings in Python

are used to handle and manipulate text data in programs.

Example:

st1 = "hello world" # String using double quotes

st2 = 'bye' # String using single quotes

st3 = """Welcome to WsCubeTech""" # multi-line string using triple quotes

https://www.wscubetech.com/resources/python

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

print(st1)

print(st2)

print(st3)

Run Code

Output:

hello world

bye

Welcome to WsCubeTech

2. Accessing Characters in Python String:

In Python, we can access individual characters in a string using indexing. Each character has a

position, starting from 0 for the first character. Strings in Python support both positive and

negative indexing. Positive indexes start from the left, while negative indexes start from the

right.

Example:

text = "WsCube Tech"

print(text[0]) # First character

print(text[3]) # Fourth character

print(text[-1]) # Last character

print(text[-4]) # Fourth character from end

Run Code

Output:

W

u

h

T

3. String Slicing in Python:

In Python, slicing helps us to get a part of a string by giving a start and end index using the

format string[start:end]. It includes characters from the start index but excludes the end index.

We can also slice using negative indexes to count from the end. Strings in Python allow flexible

slicing, which is useful when we need to extract specific words or letters.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Example:

text = "WsCube Tech"

print(text[0:6]) # From index 0 to 5

print(text[7:]) # From index 7 to end

print(text[-4:-1]) # Using negative indexing

Run Code

Output:

WsCube

Tech

Tec

4. String Length in Python:

We use the len() function to find how many characters are in a string, including spaces.

Example:

text = "WsCube Tech"

print(len(text))

Run Code

Output:

11

5. String Concatenation:

String concatenation refers to joining two strings together into a single line. We can join two

strings using the + operator.

Example:

str1 = "WsCube"

str2 = "Tech"

result = str1 + " " + str2

print(result)

Run Code

Output:

WsCube Tech

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

6. Strings Indexing and Splitting:

Indexing helps us access individual characters in a string by their position number, starting

from 0. We can use positive or negative indexes to get characters from the start or end.Strings

in Python also let us split text into parts using the .split() method, which divides the string based

on a specified separator, like a space.

Example:

text = "WsCube Tech"

print(text[0]) # Get first character

print(text[-1]) # Get last character

print(text.split()) # Split string by space

Run Code

Output:

W

h

['WsCube', 'Tech']

7. String Immutability in Python:

Strings in Python cannot be changed once created. If we try to modify a character, it will cause

an error because strings are immutable.

Example:

text = "WsCube"

text[0] = "W"

print(text)

Run Code

Output:

TypeError: 'str' object does not support item assignment

8. Deleting a String in Python:

In Python, we can delete an entire string variable using the del keyword. This removes the

reference to the string from memory. Strings in Python are objects, so deleting a string means

we cannot use it afterward, or it will cause an error.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Example:

text = "WsCube Tech"

del text

print(text) # This will cause an error because text is deleted

Run Code

Output:

NameError: name 'text' is not defined

9. Updating a String in Python:

We cannot change individual characters in a string because strings are immutable. However,

we can create a new string by combining parts of the old string with new content.

This is how we update the content of a string in Python by forming a modified version of it.

Example:

text = "WsCube Tech"

updated_text = "Hello " + text[7:]

print(updated_text)

Run Code

Output:

Hello Tech

10. Multi-line Strings in Python:

We use triple quotes (''' or """) to create strings that span multiple lines. This helps when we

want to store paragraphs, messages, or long text blocks. A multiline string in Python is also

useful for writing docstrings or comments that need multiple lines.

Example:

msg = """Welcome to

WsCube Tech.

Learn Python easily!"""

print(msg)

Run Code

Output:

Welcome to

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

WsCube Tech.

Learn Python easily!

11. String Formatting in Python:

We format strings to insert variables or values into text easily.

Method Description Example

f-strings Easy way to add variables in a string f"Hello, {name}!"

.format() Fills values in placeholders {} "Hello, {}!".format(name)

Example:

name = "WsCube"

print(f"Welcome to {name} Tech") # Using f-string

print("Welcome to {} Tech".format(name)) # Using .format()

Run Code

Output:

Welcome to WsCube Tech

Welcome to WsCube Tech

12. Looping Through a String in Python:

We can use a for loop to go through each character in a string one by one. This helps us process

or display characters from Python strings easily.

Example:

text = "WsCube Tech"

for char in text:

 print(char)

Run Code

Output:

W

s

C

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

u

b

e

T

e

c

h

13. String Comparison in Python:

In Python, we can compare two strings using comparison operators like ==, !=, <, >, <=, and

>=. These operators check if strings are equal, not equal, or which one comes first

alphabetically.

Python strings comparison is case-sensitive, so "Hello" and "hello" are treated as different.

Example:

str1 = "WsCube Tech"

str2 = "WsCube tech"

print(str1 == str2)

print(str1 != str2)

print(str1 < str2)

Run Code

Output:

False

True

True

Methods of Python String:

Apart from the ones mentioned above, there are various other string methods in Python, which

we have listed below:

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Examples of Python String Methods:

text = "wsCube Tech"

1. upper()

print(text.upper())

Methods Description

upper() Converts the string to uppercase

lower() Converts the string to lowercase

 capitalize() Capitalizes the first character of the string

partition() Splits string into a tuple at the first match of the separator.

replace() Replaces part of the string with another value

 encode() Encodes string to bytes (UTF-8 by default)

find() Returns the index of the first occurrence of a substring

 title() Converts string to title case (each word starts with a capital letter)

rstrip() Removes trailing whitespace or characters

split() Splits the string from left

startswith() Checks if a string begins with the specified string or not.

isnumeric() checks numeric characters

index() returns the index of a substring.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

2. lower()

print(text.lower())

3. capitalize()

print(text.capitalize())

4. partition()

print(text.partition(" "))

5. replace()

print(text.replace("Tech", "Python"))

6. encode()

print(text.encode())

7. find()

print(text.find("Tech"))

8. title()

print(text.title())

9. rstrip()

text2 = "Python "

print(text2.rstrip())

10. split()

print(text.split())

11. startswith()

print(text.startswith("ws"))

12. maketrans() and translate()

trans = str.maketrans("abc", "123")

text3 = "abcde"

print(text3.translate(trans))

13. isnumeric()

num = "12345"

print(num.isnumeric())

14. index()

print(text.index("Tech"))

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Run Code

Output:

WSCUBE TECH

wscube tech

Wscube tech

('wsCube', ' ', 'Tech')

wsCube Python

b'wsCube Tech'

7

Wscube Tech

Python

['wsCube', 'Tech']

True

123de

True

2.4. LISTS:

➢ It is a general purpose most widely used in data structures.

➢ List is a collection which is ordered and changeable and allows duplicate members.

(Grow and shrink as needed, sequence type, sortable).

➢ To use a list, you must declare it first. Do this using square brackets and separate values

with commas.

➢ We can construct / create list in many ways.

Ex:

>>> list1=[1,2,3,'A','B',7,8,[10,11]]

>>> print(list1)

[1, 2, 3, 'A', 'B', 7, 8, [10, 11]]

>>> x=list()

>>> x

>>> tuple1=(1,2,3,4)

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

>>> x=list(tuple1)

>>> x

[1, 2, 3, 4]

List operations:

These operations include indexing, slicing, adding, multiplying, and checking for membership

Basic List Operations:

Lists respond to the + and * operators much like strings; they mean concatenation and repetition

here too, except that the result is a new list, not a string

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x,

1 2 3 Iteration

Indexing, Slicing, and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they do for

strings.

Assuming following input

L = ['mrcet', 'college',

'MRCET!'] Python Expression

Results Description

L[2] MRCET Offsets start at zero

L[-2] college Negative: count from the right

L[1:] ['college', 'MRCET!'] Slicing fetches sections

2.5. LIST SLICES:

>>> list1=range(1,6)

>>> list1

range(1, 6)

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

>>> print(list1)

range(1, 6)

>>> list1=[1,2,3,4,5,6,7,8,9,10]

>>> list1[1:]

[2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> list1[:1]

>>> list1[2:5]

[3, 4, 5]

>>> list1[:6]

[1, 2, 3, 4, 5, 6]

>>> list1[1:2:4]

[2]

>>> list1[1:8:2]

[2, 4, 6, 8]

2.6. LIST METHODS:

The list data type has some more methods. Here are all of the methods of list objects:

▪ Del()

▪ Append()

▪ Extend()

▪ Insert()

▪ Pop()

▪ Remove()

▪ Reverse()

▪ Sort()

Delete: Delete a list or an item from a list

>>> x=[5,3,8,6]

>>> del(x[1]) #deletes the index position 1 in a list

>>> x

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

[5, 8, 6]

>>> del(x)

>>> x # complete list gets deleted

Append: Append an item to a list

>>> x=[1,5,8,4]

>>> x.append(10)

>>> x

[1, 5, 8, 4, 10]

Extend: Append a sequence to a list.

>>> x=[1,2,3,4]

>>> y=[3,6,9,1]

>>> x.extend(y)

>>> x

[1, 2, 3, 4, 3, 6, 9, 1]

Insert: To add an item at the specified index, use the insert () method:

>>> x=[1,2,4,6,7]

>>> x.insert(2,10) #insert(index no, item to be inserted)

>>> x

[1, 2, 10, 4, 6, 7]

>>> x.insert(4,['a',11])

>>> x

[1, 2, 10, 4, ['a', 11], 6, 7]

Pop: The pop() method removes the specified index, (or the last item if index is not specified)

or simply pops the last item of list and returns the item.

>>> x=[1, 2, 10, 4, 6, 7]

>>> x.pop()

7

>>> x

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

[1, 2, 10, 4, 6]

>>> x=[1, 2, 10, 4, 6]

>>> x.pop(2)

10

>>> x

[1, 2, 4, 6]

Remove: The remove() method removes the specified item from a given list.

>>> x=[1,33,2,10,4,6]

>>> x.remove(33)

>>> x

[1, 2, 10, 4, 6]

>>> x.remove(4)

>>> x

[1, 2, 10, 6]

Reverse: Reverse the order of a given list.

>>> x=[1,2,3,4,5,6,7]

>>> x.reverse()

>>> x

[7, 6, 5, 4, 3, 2, 1]

Sort: Sorts the elements in ascending order

>>> x=[7, 6, 5, 4, 3, 2, 1]

>>> x.sort()

>>> x

[1, 2, 3, 4, 5, 6, 7]

>>> x=[10,1,5,3,8,7]

>>> x.sort()

>>> x

[1, 3, 5, 7, 8, 10]

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

2.7. LIST LOOP:

Loops are control structures used to repeat a given section of code a certain number of times

or until a particular condition is met.

Method #1: For loop

#list of items

list = ['M','R','C','E','T']

i = 1

#Iterating over the list

for item in list:

print ('college ',i,' is ',item)

i = i+1

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/lis.py

college 1 is M

college 2 is R

college 3 is C

college 4 is E

college 5 is T

Method #2: For loop and range()

In case we want to use the traditional for loop which iterates from number x to number y.

Python3 code to iterate over a list

list = [1, 3, 5, 7, 9]

getting length of list

length = len(list)

Iterating the index

same as 'for i in range(len(list))'

for i in range(length):

print(list[i])

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/listlooop.py

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

1

3

5

7

9

Method #3: using while loop

Python3 code to iterate over a list

list = [1, 3, 5, 7, 9]

Getting length of list

length = len(list)

i = 0

Iterating using while loop

while i < length:

print(list[i])

i += 1

Mutability:

A mutable object can be changed after it is created, and an immutable object can't.

Append: Append an item to a list

>>> x=[1,5,8,4]

>>> x.append(10)

>>> x

[1, 5, 8, 4, 10]

Extend: Append a sequence to a list.

>>> x=[1,2,3,4]

>>> y=[3,6,9,1]

>>> x.extend(y)

>>> x

Delete: Delete a list or an item from a list

>>> x=[5,3,8,6]

>>> del(x[1]) #deletes the index position 1 in a list

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

>>> x

[5, 8, 6]

Insert: To add an item at the specified index, use the insert () method:

>>> x=[1,2,4,6,7]

>>> x.insert(2,10) #insert(index no, item to be inserted)

>>> x

[1, 2, 10, 4, 6, 7]

>>> x.insert(4,['a',11])

>>> x

[1, 2, 10, 4, ['a', 11], 6, 7]

Pop: The pop() method removes the specified index, (or the last item if index is not specified)

or simply pops the last item of list and returns the item.

>>> x=[1, 2, 10, 4, 6, 7]

>>> x.pop()

7

>>> x

[1, 2, 10, 4, 6]

>>> x=[1, 2, 10, 4, 6]

>>> x.pop(2)

10

>>> x

[1, 2, 4, 6]

Remove: The remove() method removes the specified item from a given list.

>>> x=[1,33,2,10,4,6]

>>> x.remove(33)

>>> x

[1, 2, 10, 4, 6]

>>> x.remove(4)

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

>>> x

[1, 2, 10, 6]

Reverse: Reverse the order of a given list.

>>> x=[1,2,3,4,5,6,7]

>>> x.reverse()

>>> x

[7, 6, 5, 4, 3, 2, 1]

Sort: Sorts the elements in ascending order

>>> x=[7, 6, 5, 4, 3, 2, 1]

>>> x.sort()

>>> x

[1, 2, 3, 4, 5, 6, 7]

>>> x=[10,1,5,3,8,7]

>>> x.sort()

>>> x

[1, 3, 5, 7, 8, 10]

2.8. TUPLES:

▪ A tuple is a collection which is ordered and unchangeable. In Python tuples are written

with round brackets.

▪ Supports all operations for sequences.

▪ Immutable, but member objects may be mutable.

▪ If the contents of a list shouldn’t change, use a tuple to prevent items from accidently

being added, changed, or deleted.

▪ Tuples are more efficient than list due to python’s implementation.

We can construct tuple in many ways:

X=() #no item tuple

X=(1,2,3)

X=tuple(list1)

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

X=1,2,3,4

Example:

>>> x=(1,2,3)

>>> print(x)

(1, 2, 3)

>>> x

(1, 2, 3)

>>> x=()

>>> x

()

>>> x=[4,5,66,9]

>>> y=tuple(x)

>>> y

(4, 5, 66, 9)

>>> x=1,2,3,4

>>> x

(1, 2, 3, 4)

Some of the operations of tuple are:

▪ Access tuple items

▪ Change tuple items

▪ Loop through a tuple

▪ Count()

▪ Index()

▪ Length()

Access tuple items: Access tuple items by referring to the index number, inside square brackets

>>> x=('a','b','c','g')

>>> print(x[2])

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

c

Change tuple items: Once a tuple is created, you cannot change its values. Tuples are

unchangeable.

>>> x=(2,5,7,'4',8)

>>> x[1]=10

Traceback (most recent call last):

File "<pyshell#41>", line 1, in <module>

x[1]=10

Type Error: 'tuple' object does not support item assignment

>>> x

(2, 5, 7, '4', 8) # the value is still the same

Loop through a tuple: We can loop the values of tuple using for loop

>>> x=4,5,6,7,2,'aa'

>>> for i in x:

print(i)

4

5

6

7

2

aa

Count (): Returns the number of times a specified value occurs in a tuple

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.count(2)

4

Index (): Searches the tuple for a specified value and returns the position of where it was found

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.index(2)

1

(Or)

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=x.index(2)

>>> print(y)

1

Length (): To know the number of items or values present in a tuple, we use len().

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=len(x)

>>> print(y)

12

Tuple Assignment

Python has tuple assignment feature which enables you to assign more than one variable at a

time. In here, we have assigned tuple 1 with the college information like college name, year,

etc. and another tuple 2 with the values in it like number (1, 2, 3… 7).

For Example,

Here is the code,

 >>> tup1 = ('mrcet', 'eng college','2004','cse', 'it','csit');

 >>> tup2 = (1,2,3,4,5,6,7);

 >>> print(tup1[0])

 mrcet

>>> print(tup2[1:4])

(2, 3, 4)

Tuple 1 includes list of information of mrcet

Tuple 2 includes list of numbers in it

We call the value for [0] in tuple and for tuple 2 we call the value between 1 and 4

Run the above code- It gives name mrcet for first tuple while for second tuple it gives number

(2, 3, 4)

Tuple as return values:

A Tuple is a comma separated sequence of items. It is created with or without (). Tuples are

immutable.

A Python program to return multiple values from a method using tuple

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

This function returns a tuple

def fun():

str = "mrcet college"

x = 20

return str, x; # Return tuple, we could also

write (str, x)

Driver code to test above method

str, x = fun() # Assign returned tuple

print(str)

print(x)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/tupretval.py

mrcet college

20

 Functions can return tuples as return values.

def circleInfo(r):

""" Return (circumference, area) of a circle of radius r """

c = 2 * 3.14159 * r

a = 3.14159 * r * r

return (c, a)

print(circleInfo(10))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/functupretval.py

(62.8318, 314.159)

def f(x):

y0 = x + 1

y1 = x * 3

y2 = y0 ** y3

return (y0, y1, y2)

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Tuple methods:

Count (): Returns the number of times a specified value occurs in a tuple

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.count(2)

4

Index (): Searches the tuple for a specified value and returns the position of where it was found

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.index(2)

1

(Or)

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=x.index(2)

>>> print(y)

1

2.9. SETS:

A set is a collection which is unordered and unindexed with no duplicate elements. In Python

sets are written with curly brackets.

▪ To create an empty set we use set()

▪ Curly braces ‘{}’ or the set() function can be used to create sets

We can construct tuple in many ways:

X=set()

X={3,5,6,8}

X=set(list1)

Example:

>>> x={1,3,5,6}

>>> x

{1, 3, 5, 6}

>>> x=set()

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

>>> x

set()

>>> list1=[4,6,"dd",7]

>>> x=set(list1)

>>> x

{4, 'dd', 6, 7}

▪ We cannot access items in a set by referring to an index, since sets are unordered the

items has no index.

▪ But you can loop through the set items using a for loop, or ask if a specified value is

present in a set, by using the in keyword.

Some of the basic set operations are:

▪ Add()

▪ Remove()

▪ Len()

▪ Item in x

▪ Pop

▪ Clear

Add (): To add one item to a set use the add () method. To add more than one item to a set use

the update () method.

>>> x={"mrcet","college","cse","dept"}

>>> x.add("autonomous")

>>> x

{'mrcet', 'dept', 'autonomous', 'cse', 'college'}

>>> x={1,2,3}

>>> x.update("a","b")

>>> x

{1, 2, 3, 'a', 'b'}

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

>>> x={1,2,3}

>>> x.update([4,5],[6,7,8])

>>> x

{1, 2, 3, 4, 5, 6, 7, 8}

Remove (): To remove an item from the set we use remove or discard methods.

>>> x={1, 2, 3, 'a', 'b'}

>>> x.remove(3)

>>> x

{1, 2, 'a', 'b'}

Len (): To know the number of items present in a set, we use len().

>>> z={'mrcet', 'dept', 'autonomous', 'cse', 'college'}

>>> len(z) PYTHON PROGRAMMING III YEAR/I SEM MRCET

43

5

Item in X: you can loop through the set items using a for loop.

>>> x={'a','b','c','d'}

>>> for item in x:

print(item)

c

d

a

b

pop ():This method is used to remove an item, but this method will remove the last item.

Remember that sets are unordered, so you will not know what item that gets removed.

>>> x={1, 2, 3, 4, 5, 6, 7, 8}

>>> x.pop()

1

>>> x

{2, 3, 4, 5, 6, 7, 8}

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Clear (): This method will the set as empty.

>>> x={2, 3, 4, 5, 6, 7, 8}

>>> x.clear()

>>> x

set()

The set also consist of some mathematical operations like:

Intersection AND &

Union OR |

Symmetric Diff XOR ^

Diff In set1 but not in set2 set1-set2

Subset set2 contains set1 set1<=set2

Superset set1 contains set2 set1>=set2

Some examples:

>>> x={1,2,3,4}

>>> y={4,5,6,7}

>>> print(x|y)

{1, 2, 3, 4, 5, 6, 7}

>>> x={1,2,3,4}

>>> y={4,5,6,7}

>>> print(x&y)

{4}

>>> A = {1, 2, 3, 4, 5}

>>> B = {4, 5, 6, 7, 8}

>>> print(A-B)

{1, 2, 3}

>>> B = {4, 5, 6, 7, 8}

>>> A = {1, 2, 3, 4, 5}

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

>>> print(B^A)

{1, 2, 3, 6, 7, 8}

2.10. DICTIONARIES:

A dictionary is a collection which is unordered, changeable and indexed. In Python dictionaries

are written with curly brackets, and they have keys and values.

▪ Key-value pairs

▪ Unordered

We can construct or create dictionary like:

X={1:’A’,2:’B’,3:’c’}

X=dict([(‘a’,3) (‘b’,4)]

X=dict(‘A’=1,’B’ =2)

Examples:

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> dict1

{'brand': 'mrcet', 'model': 'college', 'year': 2004}

To access specific value of a dictionary, we must pass its key,

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> x=dict1["brand"]

>>> x

'mrcet'

To access keys and values and items of dictionary:

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> dict1.keys()

dict_keys(['brand', 'model', 'year'])

>>> dict1.values()

dict_values(['mrcet', 'college', 2004])

>>> dict1.items()

dict_items([('brand', 'mrcet'), ('model', 'college'), ('year', 2004)])

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

>>> for items in dict1.values():

print(items)

mrcet

college

2004

>>> for items in dict1.keys():

print(items)

brand

model

year

>>> for i in dict1.items():

print(i)

('brand', 'mrcet')

('model', 'college')

('year', 2004)

Some of the operations are:

▪ Add/change

▪ Remove

▪ Length

▪ Delete

Add/change values: You can change the value of a specific item by referring to its key name

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> dict1["year"]=2005

>>> dict1

{'brand': 'mrcet', 'model': 'college', 'year': 2005}

Remove(): It removes or pop the specific item of dictionary.

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> print(dict1.pop("model"))

college

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

>>> dict1

{'brand': 'mrcet', 'year': 2005}

Delete: Deletes a particular item.

>>> x = {1:1, 2:4, 3:9, 4:16, 5:25}

>>> del x[5]

>>> x

Length: we use len() method to get the length of dictionary.

>>>{1: 1, 2: 4, 3: 9, 4: 16}

{1: 1, 2: 4, 3: 9, 4: 16}

>>> y=len(x)

>>> y

4

Iterating over (key, value) pairs:

>>> x = {1:1, 2:4, 3:9, 4:16, 5:25}

>>> for key in x:

print(key, x[key])

1 1

2 4

3 9

4 16

5 25

>>> for k,v in x.items():

print(k,v)

1 1

2 4

3 9

4 16

5 25

List of Dictionaries:

>>> customers = [{"uid":1,"name":"John"},

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

{"uid":2,"name":"Smith"},

{"uid":3,"name":"Andersson"},

]

>>> >>> print(customers)

[{'uid': 1, 'name': 'John'}, {'uid': 2, 'name': 'Smith'}, {'uid': 3, 'name': 'Andersson'}]

Print the uid and name of each customer

>>> for x in customers:

print(x["uid"], x["name"])

1 John

2 Smith

3 Andersson

Modify an entry, This will change the name of customer 2 from Smith to Charlie

>>> customers[2]["name"]="charlie"

>>> print(customers)

[{'uid': 1, 'name': 'John'}, {'uid': 2, 'name': 'Smith'}, {'uid': 3, 'name': 'charlie'}]

Add a new field to each entry

>>> for x in customers:

x["password"]="123456" # any initial value

>>> print(customers)

[{'uid': 1, 'name': 'John', 'password': '123456'}, {'uid': 2, 'name': 'Smith', 'password': '123456'},

{'uid': 3, 'name': 'charlie', 'password': '123456'}]

Delete a field

>>> del customers[1]

>>> print(customers)

[{'uid': 1, 'name': 'John', 'password': '123456'}, {'uid': 3, 'name': 'charlie', 'password': '123456'}]

>>> del customers[1]

>>> print(customers)

[{'uid': 1, 'name': 'John', 'password': '123456'}]

Delete all fields

>>> for x in customers:

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

del x["uid"]

>>> x

{'name': 'John', 'password': '123456'}

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

UNIT III: FUNCTIONS

Definition and types – Passing parameters to a Function – Scope – Type conversion – Passing

Functions to a Function – Modules – Standard Modules – Inbuilt Function – Scope of

Variables.

3.1. DEFINITION OF FUNCTION:

A function in Python is a block of code that performs a specific task. It takes zero or more

inputs (arguments), performs some operations on those inputs, and may return a result.

Functions provide a way to break down a large program into smaller, more manageable pieces.

Functions are very essential part of any programming language. They help our code to make

modular, reusable, and organized. Instead of writing the same code again and again, we can

create a function and call it whenever it needed.

Types of Functions in Python:

Python supports various types of functions, each serving different purposes in programming.

Here are the main types of functions in Python, along with examples:

1. Built-in Functions

These functions are pre-defined in Python and can be used directly without any further

declaration.

Example

Using the built-in len() function

my_list = [1, 2, 3, 4, 5]

print(len(my_list))

Output: 5

2. User-defined Functions

These are functions that users create to perform specific tasks.

Example

def add_numbers(a, b):

 return a + b

result = add_numbers(3, 5)

print(result)

Output: 8

3.Anonymous Functions (Lambda Functions)

https://www.simplilearn.com/best-programming-languages-start-learning-today-article

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

These are small, unnamed functions defined using the lambda keyword. They are typically

used for short, simple operations.

Example

add = lambda x, y: x + y

print(add(3, 5))

 # Output: 8

4. Recursive Functions

These are functions that call themselves within their definition. They help solve problems that

can be broken down into smaller, similar problems.

Example

def factorial(n):

 if n == 1:

 return 1

 else:

 return n * factorial(n - 1)

print(factorial(5))

Output: 120

5. Higher-Order Functions

These functions can take other functions as arguments or return them as results. Examples

include map(), filter(), and reduce().

Example

def square(x):

 return x * x

numbers = [1, 2, 3, 4, 5]

squared_numbers = list(map(square, numbers))

print(squared_numbers)

 # Output: [1, 4, 9, 16, 25]

6. Generator Functions

These functions yield values one at a time and can produce a sequence of values over time,

using the yield keyword.

https://www.simplilearn.com/operations-manager-skills-article
https://www.simplilearn.com/challenges-of-artificial-intelligence-article
https://www.simplilearn.com/what-is-dimensionality-reduction-article

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Example

def generate_numbers():

 for i in range(1, 6):

 yield i

for number in generate_numbers():

 print(number)

 # Output: 1 2 3 4 5

3.2. PASSING PARAMETERS TO A FUNCTION:

 In Python, you can pass parameters to a function using several methods, including

positional arguments, keyword arguments, default arguments, and variable-length arguments.

1. Positional Arguments

Positional arguments are passed to the function in the order they are defined. The number and

order of arguments must match the parameters in the function definition.

Python

def greet(first_name, last_name):

 print(f"Hello, {first_name} {last_name}!")

greet("Jane", "Doe")

Output: Hello, Jane Doe!

2. Keyword Arguments

Keyword arguments allow you to specify the parameter names when calling the function. This

means you can pass arguments in any order, which improves readability.

Python

def display_info(first_name, last_name):

 print(f"First Name: {first_name}")

 print(f"Last Name: {last_name}")

Order doesn't matter with keyword arguments

display_info(last_name="Smith", first_name="John")

Output:

First Name: John

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Last Name: Smith

3. Default Arguments

You can provide default values for parameters in the function definition. If an argument is not

provided during the function call, the default value is used.

Python

def calculate_interest(principal, time, rate=0.15):

 interest = principal * time * rate

 print(f"Interest: {interest}")

calculate_interest(1000, 2)

Output: Interest: 300.0 (uses default rate of 0.15)

calculate_interest(1000, 2, rate=0.1)

Output: Interest: 200.0 (overrides the default rate)

4. Variable-Length Arguments (*args and **kwargs)

Python allows you to pass a variable number of arguments using special syntax:

*args (non-keyword arguments): This is used to pass a variable number of positional

arguments. The arguments are collected into a tuple inside the function.

Python

def find_sum(*numbers):

 result = sum(numbers)

 print(f"Sum: {result}")

find_sum(1, 2, 3) # Output: Sum: 6

find_sum(4, 5) # Output: Sum: 9

**kwargs (keyword arguments): This is used to pass a variable number of keyword

arguments. The arguments are collected into a dictionary inside the function.

Python

def display_details(**details):

 for key, value in details.items():

 print(f"{key}: {value}")

display_details(name="Alice", age=30, city="New York")

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Output:

name: Alice

age: 30

city: New York

3.3. SCOPE:

A variable is only available from inside the region it is created. This is called scope. Scope is

the region of code where a name is visible. When you use a name, Python looks it up in this

order (LEGB):

• Local: the current function’s scope.

• Enclosing: any outer function scopes (for nested functions).

• Global: the module’s top level (module namespace).

• Built-in: names defined by Python in builtins (for example, len, print).

Names live in namespaces (think dictionaries mapping names to objects). Scope is about which

namespaces Python consults to resolve a name at a given point in code.

Local scope:

Names assigned inside a function are local to that function unless declared otherwise. They are

not visible outside the function.

def show_order_id():

 order_id = 42

 print("inside function:", order_id)

show_order_id()

print("outside function:", order_id) # NameError

Python decides scope at compile time. If a function assigns to a name anywhere in its body, all

uses of that name in the function are treated as local-leading to a common Unbound Local

Error when you read before assigning:

discount_rate = 0.10 # module-level (global)

def price_with_discount(amount_cents):

 print("configured discount:", discount_rate) # looks local because of the assignment below

 discount_rate = 0.20 # assignment makes 'discount_rate' local in this function

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 return int(amount_cents * (1 - discount_rate))

UnboundLocalError: cannot access local variable 'discount_rate' where it is not associated

with a value.

Enclosing scope (closures):

Nested functions can see names from their immediately enclosing function. To rebind such a

name (not just read it), declare it nonlocal.

def make_step_counter():

 count = 0 # enclosing scope for 'increment'

 def increment():

 nonlocal count # rebind the 'count' in the nearest enclosing function

 count += 1

 return count

 return increment

step = make_step_counter()

print(step()) # 1

print(step()) # 2

Without nonlocal, assigning to count inside increment() would create a new local name and

leave the outer count unchanged.

Global scope:

Names assigned at the top level of a module live in the module’s global namespace. Any

function can read them. To assign to a module-level name from inside a function, declare

it global.

greeting = "Hello"

def greet_city(city_name):

 print(greeting, city_name) # reads global

def set_greeting(new_greeting):

 global greeting

 greeting = new_greeting # rebinds global

greet_city("Nairobi") # Hello Nairobi

set_greeting("Hi")

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

greet_city("Nairobi") # Hi Nairobi

Use global sparingly. Prefer passing values as parameters and returning results to keep code

testable and predictable.

Built-in scope (and a note on keywords):

The built-in scope contains names like len, print, and Exception. Avoid shadowing them, or

you’ll lose access to the built-in for that scope.

list = [1, 2, 3] # shadows the built-in 'list' constructor

list("abc") # TypeError: 'list' object is not callable

del list # fix by deleting the shadowing name

3.4. TYPE CONVERSION:

 Type conversion means changing the data type of a value. For example, converting

an integer (5) to a float (5.0) or a string ("10") to an integer (10). In Python, there are two types

of type conversion:

1. Implicit Conversion: Python changes the data type by itself while running the code,

to avoid mistakes or data loss.

2. Explicit Conversion: You change the data type on purpose using functions like int(),

float() or str().

Implicit Type Conversion:

In implicit conversion, Python automatically converts one data type into another during

expression evaluation. This usually happens when a smaller data type like int is combined with

a larger one like float in an operation. Example:

x = 10 # Integer

y = 10.6 # Float

z = x + y

print("x:", type(x))

print("y:", type(y))

print("z =", z)

print("z :", type(z))

Output

x: <class 'int'>

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

y: <class 'float'>

z = 20.6

z : <class 'float'>

Explanation: x is an integer and y is a float. In z = x + y, Python automatically converts x to

float to avoid data loss, making z a float 0.6.

Explicit Type Conversion:

Explicit conversion (or type casting) is when you manually convert the data type of a value

using Python’s built-in functions. This is helpful when you want to control how the data is

interpreted or manipulated in your code. Some common type casting functions include:

• int() converts a value to an integer

• float() converts a value to a floating point number

• str() converts a value to a string

• bool() converts a value to a Boolean (True/False)

Example:

s = "100" # String

a = int(s)

print(a)

print(type(a))

Output

100

<class 'int'>

Explanation: a = int(s), we explicitly convert it to an integer. This manual type change is

called explicit type conversion and a becomes 100 of type <class 'int'>.

Examples of Common Type Conversion Functions

Example 1: Converting a binary string

s = "10010"

a = int(s, 2)

print(a)

b= float(s)

print(b)

https://www.geeksforgeeks.org/python/python-built-in-functions/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Output

18

10010.0

Explanation:

• int(s, 2) interprets the binary string '10010' as the integer 18.

• float(s) converts the string to a floating-point number.

Example 2: ASCII, Hexadecimal and Octal Conversion

c = '4'

print("ASCII of '4':", ord(c))

print("56 in Hex:", hex(56))

print("56 in Octal:", oct(56))

Output

ASCII of '4': 52

56 in Hex: 0x38

56 in Octal: 0o70

Explanation:

• ord(c) returns the ASCII code of the character '4'.

• hex() and oct() convert the integer 56 to its hexadecimal and octal representations,

respectively.

Example 3: String to Tuple, Set and List

s = 'geeks'

print("To tuple:", tuple(s))

print("To set:", set(s))

print("To list:", list(s))

Output

To tuple: ('g', 'e', 'e', 'k', 's')

To set: {'e', 'g', 'k', 's'}

To list: ['g', 'e', 'e', 'k', 's']

Explanation:

• tuple(s) keeps all characters including duplicates in order.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

• set(s) removes duplicates and returns an unordered collection.

• list(s) returns a list of characters from the string.

Example 4: Other Conversions – Complex, String, Dictionary

a = 1

tup = (('a', 1), ('f', 2), ('g', 3))

print("To complex:", complex(1, 2))

print("To string:", str(a))

print("To dict:", dict(tup))

Output

To complex: (1+2j)

To string: 1

To dict: {'a': 1, 'f': 2, 'g': 3}

Explanation:

• complex(1, 2) creates a complex number with real part 1 and imaginary part 2.

• str(a) converts the integer 1 to the string "1".

• dict(tup) creates a dictionary from a sequence of key-value tuples.

3.5. PASSING FUNCTIONS TO A FUNCTION:

 In Python, functions are first-class objects meaning they can be assigned to variables,

passed as arguments and returned from other functions. This enables higher-order

functions, decorators and lambda expressions. By passing a function as an argument, we can

modify a function’s behavior dynamically without altering its implementation. For Example:

def process(func, text): # applies a function to text

 return func(text)

def uppercase(text): # converts text to uppercase

 return text.upper()

print(process(uppercase, "hello"))

Output

HELLO

Explanation: process() applies a given function to text and uppercase() converts text to

uppercase. Passing uppercase to process with "hello" results in "HELLO".

https://www.geeksforgeeks.org/python/python-programming-language-tutorial/
https://www.geeksforgeeks.org/python/python-functions/
https://www.geeksforgeeks.org/python/python-lambda-anonymous-functions-filter-map-reduce/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Higher Order Functions:

A higher-order function takes or returns another function, enabling reusable and efficient code.

It supports functional programming with features like callbacks, decorators, and utilities such

as map(), filter(), and reduce().

Example 1 : Basic function passing

higher-order function

def fun(func, number):

 return func(number)

function to double a number

def double(x):

 return x * 2

print(fun(double, 5))

Output

10

Explanation: fun() takes double() as an argument and applies it to 5, returning 10.

Example 2: Passing Built-in Functions

function to apply an operation on a list

def fun(func, numbers):

 return [func(num) for num in numbers]

using the built-in 'abs' function

a = [-1, -2, 3, -4]

print(fun(abs, a))

Output

[1, 2, 3, 4]

Explanation: abs() is passed to fun(), which applies it to each element in the list, converting

negative numbers to positive.

Lambda Functions:

A lambda function in Python is a small, anonymous function with a single expression, defined

using lambda. It’s often used in higher-order functions for quick, one-time operations.

Example: Lambda Function as an Argument

https://www.geeksforgeeks.org/python/higher-order-functions-in-python/
https://www.geeksforgeeks.org/python/python-lambda-anonymous-functions-filter-map-reduce/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

function that applies an operation to a number

def fun(func, number):

 return func(number)

passing a lambda function

print(fun(lambda x: x ** 2, 5))

Output

25

Explanation: lambda x: x ** 2 is passed to fun(), which squares the input 5 to produce 25.

Wrapper Functions(Decorators)

A wrapper function (decorator) enhances another function's behavior without modifying it. It

takes a function as an argument and calls it within the wrapper.

Example 1 : Simple decorator

simple decorator example

def decorator_fun(original_fun):

 def wrapper_fun():

 print("Hello, this is before function execution")

 original_fun()

 print("This is after function execution")

 return wrapper_fun

@decorator_fun

def display():

 print("This is inside the function !!")

calling the decorated function

display()

Output

Hello, this is before function execution

This is inside the function !!

This is after function execution

Explanation: decorator_fun wraps the display() function, adding pre- and post-execution

messages.

https://www.geeksforgeeks.org/python/function-wrappers-in-python/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Example 2: Lambda Wrapper Function

def apply_lambda(func, value):

 return func(value)

square = lambda x: x ** 2

print("Square of 2 is:", apply_lambda(square, 2))

Output

Square of 2 is: 4

Explanation: apply_lambda() function applies the lambda function lambda x: x ** 2 to 2,

returning 4.

Built-in Functions using function arguments:

Python provides built-in functions that take other functions as arguments .

Example 1 : map()

a = [1, 2, 3, 4]

res = list(map(lambda x: x * 2, a))

print(res)

Output

[2, 4, 6, 8]

Explanation: map() function applies lambda x: x * 2 to each element in a, doubling all

values.

Example 2 : filter()

a = [1, 2, 3, 4, 5]

res = list(filter(lambda x: x % 2 == 0, a))

print(res)

Output

[2, 4]

Explanation: filter() selects even numbers from the list using lambda x: x % 2 == 0.

Example 3: reduce()

from functools import reduce

a = [1, 2, 3, 4]

res = reduce(lambda x, y: x + y, a)

https://www.geeksforgeeks.org/python/python-map-function/
https://www.geeksforgeeks.org/python/filter-in-python/
https://www.geeksforgeeks.org/python/reduce-in-python/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

print(res)

Output

10

Explanation: reduce() function applies lambda x, y: x + y cumulatively to elements in a,

summing them to 10.

3.6. MODULES:

 A Module in python is a file containing definitions and statements. A module can

define functions, classes and variables. Modules help organize code into separate files so that

programs become easier to maintain and reuse. Instead of writing everything in one place,

related functionality can be grouped into its own module and imported whenever needed.

Create a Python Module:

To create a Python module, write the desired code and save that in a file with .py extension.

Let's understand it better with an example:

Example: Let's create a calc.py in which we define two functions, one add and another

subtract.

calc.py

def add(x, y):

 return (x+y)

def subtract(x, y):

 return (x-y)

This is all that is required to create a module.

Import module:

Modules can be used in another Python file using the import statement. When Python sees an

import, it loads the module if it exists in the interpreter’s search path.

Syntax:

import module

Example: Now, we are importing the calc that we created earlier to perform add operation.

import calc

print(calc.add(10, 2))

https://www.geeksforgeeks.org/python/python-programming-language-tutorial/
https://www.geeksforgeeks.org/python/python-programming-language-tutorial/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Output

12

Explanation: import calc loads the module and calc.add() accesses a function through dot

notation.

Types of Import Statements:

1. Import From Module: This allows importing specific functions, classes, or variables rather

than the whole module.

from math import sqrt, factorial

print(sqrt(16))

print(factorial(6))

Output

4.0

720

Explanation: Only sqrt and factorial are brought into the local namespace, so the prefix

math. is not required.

2. Import All Names: * imports everything from a module into the current namespace.

from math import *

print(sqrt(16))

print(factorial(6))

Output

4.0

720

Explanation: Every public name of math becomes directly accessible. (Not recommended in

large projects due to namespace conflicts.)

3. Import With Alias: You can shorten a module’s name using as.

import math as m

print(m.pi)

Output

3.141592653589793

Explanation: math is accessed through the shorter alias m.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Types of Modules in Python:

Python provides several kinds of modules. Each type plays a different role in application

development.

1. Built-in Modules: These come bundled with Python and require no installation - e.g.,

math, random, os.

import random

print(random.randint(1, 5))

Output

4

Explanation: random.randint() returns a random number within the given range.

2. User-Defined Modules: These are modules you create yourself, such as calc.py.

import calc

print(calc.sub(20, 5))

Output

15

Explanation: The module is created manually and then imported into another script.

3. External (Third-Party) Modules: These modules are installed using pip - e.g., NumPy,

Pandas, Requests.

import requests

r = requests.get("https://example.com")

print(r.status_code)

Output

200

Explanation: requests is installed separately (pip install requests) and provides HTTP utilities.

4. Package Modules: A package is a directory containing multiple modules, usually with

an __init__.py file.

Example Directory

mypkg/

__init__.py

calc.py

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

utils.py

Using a module from a package

from mypkg import utils

print(utils.some_func())

calls a function named some_func(), the output will be whatever that function returns.

If utils.py contains something like:

def some_func():

 return "Hello"

Output

Hello

Locating a Module

Python searches for modules in a predefined list of directories known as the module search

path. You can view this list using sys.path.

import sys

for p in sys.path:

 print(p)

Output

/home/guest/sandbox

/usr/local/lib/python313.zip

/usr/local/lib/python3.13

/usr/local/lib/python3.13/lib-dynload

/usr/local/lib/python3.13/site-packages

Explanation: Python checks each path in order until it finds the module you’re trying to

import.

3.7. STANDARD MODULES:

 Python's "Standard Library" is a vast collection of built-in modules that are installed with

Python itself. These modules provide pre-written functionality to handle common

programming tasks, so you don't have to reinvent the wheel.

Here are some of the most frequently used standard modules, categorized by their function:

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

1. System and Operating System Interaction:

• sys: Provides access to system-specific parameters and functions. Useful for interacting

with the Python runtime environment.

o Common uses: Accessing command-line arguments (sys.argv), exiting the

program (sys.exit()), checking the Python version (sys.version).

• os: A portable way of interacting with the operating system (e.g., Windows, macOS,

Linux).

o Common uses: File and directory management

(os.listdir(), os.mkdir(), os.remove(), os.path.join()), environment variables.

• pathlib: (Recommended over os.path in modern Python) An object-oriented way to

handle filesystem paths.

o Common uses: Creating, parsing, and manipulating file paths cleanly.

2. Mathematics and Data Types:

• math: Provides access to common mathematical functions and constants beyond basic

arithmetic.

o Common uses: math.sqrt(), math.pi, math.ceil(), trigonometric functions.

• random: Generates pseudo-random numbers, sequences, and choices.

o Common uses: Simulating dice rolls (random.randint()), shuffling lists

(random.shuffle()), selecting random elements (random.choice()).

• datetime: Classes for working with dates and times.

o Common uses: Getting the current time, formatting dates, calculating time

differences.

3. Data Storage and Serialization:

• json: Encodes and decodes data using the JavaScript Object Notation (JSON) format,

which is common for data interchange on the web.

o Common uses: Reading from or writing to .json files, interacting with APIs.

• pickle: Python's native way to "serialize" (convert) Python objects into a byte stream,

allowing them to be saved to a file or transferred over a network.

o Common uses: Saving the state of a complex object or game session.

• csv: Provides tools for reading from and writing to CSV (Comma Separated Values)

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

• files easily.

4. Internet and Networking:

• requests: (While not strictly built-in, it is the de facto standard for HTTP requests and

is recommended for robust web interaction).

• urllib / urllib.request: Python's built-in modules for fetching URLs (websites).

• http.server: Allows you to quickly spin up a basic web server (often used for serving

static files locally).

5. Utilities and Debugging:

• re: Provides full support for regular expressions (regex), a powerful tool for pattern

matching and text manipulation.

• logging: A flexible and comprehensive framework for emitting log messages from

Python programs.

• unittest: The built-in framework for writing automated tests for your code.

• argparse: Handles the parsing of command-line arguments and options passed to your

scripts, creating user-friendly command-line interfaces (CLIs).

Accessing the Standard Library:

The official Python Standard Library documentation is the definitive resource for discovering

all available modules and how to use them.

You can import any of these modules into your code using the simple import statement:

python

import os

import math

import json

import random

print(math.sqrt(16))

print(os.getcwd())

3.8. INBUILT FUNCTION:

 Python’s built-in functions are a set of core functions that are readily available for

use in any Python program without needing to import any external libraries. These functions

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

provide basic functionalities, ranging from simple data manipulation to advanced operations,

making Python an efficient and versatile programming language.

List of Python Built-in Functions:

As of Python 3.12.2 version, the list of built-in functions is given below −

Sr.No. Function & Description

1
Python aiter() function

Returns an asynchronous iterator for an asynchronous iterable.

2
Python all() function

Returns true when all elements in iterable is true.

3
Python anext() function

Returns the next item from the given asynchronous iterator.

4
Python any() function

Checks if any Element of an Iterable is True.

5
Python ascii() function

Returns String Containing Printable Representation.

6
Python bin() function

Converts integer to binary string.

7
Python bool() function

Converts a Value to Boolean.

8

Python breakpoint() function

This function drops you into the debugger at the call site and calls

sys.breakpointhook().

9
Python bytearray() function

Returns array of given byte size.

https://www.tutorialspoint.com/python/python_aiter_function.htm
https://www.tutorialspoint.com/python/python_all_function.htm
https://www.tutorialspoint.com/python/python_anext_function.htm
https://www.tutorialspoint.com/python/python_any_function.htm
https://www.tutorialspoint.com/python/python_ascii_function.htm
https://www.tutorialspoint.com/python/python_bin_function.htm
https://www.tutorialspoint.com/python/python_bool_function.htm
https://www.tutorialspoint.com/python/python_breakpoint_function.htm
https://www.tutorialspoint.com/python/python_bytearray_function.htm

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

10
Python bytes() function

Returns immutable bytes object.

11
Python callable() function

Checks if the Object is Callable.

12
Python chr() function

Returns a Character (a string) from an Integer.

13
Python classmethod() function

Returns class method for given function.

14
Python compile() function

Returns a code object.

15
Python complex() function

Creates a Complex Number.

16
Python delattr() function

Deletes Attribute From the Object.

17
Python dict() function

Creates a Dictionary.

18
Python dir() function

Tries to Return Attributes of Object.

19
Python divmod() function

Returns a Tuple of Quotient and Remainder.

20
Python enumerate() function

Returns an Enumerate Object.

https://www.tutorialspoint.com/python/python_bytes_function.htm
https://www.tutorialspoint.com/python/python_callable_function.htm
https://www.tutorialspoint.com/python/python-chr-function.htm
https://www.tutorialspoint.com/python/python_classmethod_function.htm
https://www.tutorialspoint.com/python/python_compile_function.htm
https://www.tutorialspoint.com/python/python-complex-function.htm
https://www.tutorialspoint.com/python/python_delattr_function.htm
https://www.tutorialspoint.com/python/python-dict-function.htm
https://www.tutorialspoint.com/python/python_dir_function.htm
https://www.tutorialspoint.com/python/python_divmod_function.htm
https://www.tutorialspoint.com/python/python_enumerate_function.htm

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

21
Python eval() function

Runs Code Within Program.

22
Python exec() function

Executes Dynamically Created Program.

23
Python filter() function

Constructs iterator from elements which are true.

24
Python float() function

Returns floating point number from number, string.

25
Python format() function

Returns formatted representation of a value.

26
Python frozenset() function

Returns immutable frozenset object.

27
Python getattr() function

Returns value of named attribute of an object.

28
Python globals() function

Returns dictionary of current global symbol table.

29
Python hasattr() function

Returns whether object has named attribute.

30
Python hash() function

Returns hash value of an object.

31
Python help() function

Invokes the built-in Help System.

https://www.tutorialspoint.com/python/python-eval-function.htm
https://www.tutorialspoint.com/python/python_exec_function.htm
https://www.tutorialspoint.com/python/python_filter_function.htm
https://www.tutorialspoint.com/python/python-float-function.htm
https://www.tutorialspoint.com/python/python_format_function.htm
https://www.tutorialspoint.com/python/python-frozenset-function.htm
https://www.tutorialspoint.com/python/python_getattr_function.htm
https://www.tutorialspoint.com/python/python_globals_function.htm
https://www.tutorialspoint.com/python/python_hasattr_function.htm
https://www.tutorialspoint.com/python/python_hash_function.htm
https://www.tutorialspoint.com/python/python_help_function.htm

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

32
Python hex() function

Converts to Integer to Hexadecimal.

33
Python id() function

Returns Identify of an Object.

34
Python input() function

Reads and returns a line of string.

35
Python int() function

Returns integer from a number or string.

36
Python isinstance() function

Checks if a Object is an Instance of Class.

37
Python issubclass() function

Checks if a Class is Subclass of another Class.

38
Python iter() function

Returns an iterator.

39
Python len() function

Returns Length of an Object.

40
Python list() function

Creates a list in Python.

41
Python locals() function

Returns dictionary of a current local symbol table.

42
Python map() function

Applies Function and Returns a List.

https://www.tutorialspoint.com/python/python-hex-function.htm
https://www.tutorialspoint.com/python/python_id_function.htm
https://www.tutorialspoint.com/python/python_input_function.htm
https://www.tutorialspoint.com/python/python-int-function.htm
https://www.tutorialspoint.com/python/python_isinstance_function.htm
https://www.tutorialspoint.com/python/python_issubclass_function.htm
https://www.tutorialspoint.com/python/python_iter_function.htm
https://www.tutorialspoint.com/python/python_len_function.htm
https://www.tutorialspoint.com/python/python-list-function.htm
https://www.tutorialspoint.com/python/python_locals_function.htm
https://www.tutorialspoint.com/python/python_map_function.htm

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

43
Python memoryview() function

Returns memory view of an argument.

44
Python next() function

Retrieves next item from the iterator.

45
Python object() function

Creates a featureless object.

46
Python oct() function

Returns the octal representation of an integer.

47
Python open() function

Returns a file object.

48
Python ord() function

Returns an integer of the Unicode character.

49
Python print() function

Prints the Given Object.

50
Python property() function

Returns the property attribute.

51
Python range() function

Returns a sequence of integers.

52
Python repr() function

Returns a printable representation of the object.

53
Python reversed() function

Returns the reversed iterator of a sequence.

https://www.tutorialspoint.com/python/python_memoryview_function.htm
https://www.tutorialspoint.com/python/python_next_function.htm
https://www.tutorialspoint.com/python/python_object_function.htm
https://www.tutorialspoint.com/python/python-oct-function.htm
https://www.tutorialspoint.com/python/python_open_function.htm
https://www.tutorialspoint.com/python/python-ord-function.htm
https://www.tutorialspoint.com/python/python_print_function.htm
https://www.tutorialspoint.com/python/python_property_function.htm
https://www.tutorialspoint.com/python/python_range_function.htm
https://www.tutorialspoint.com/python/python-repr-function.htm
https://www.tutorialspoint.com/python/python_reversed_function.htm

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

54
Python set() function

Constructs and returns a set.

55
Python setattr() function

Sets the value of an attribute of an object.

56
Python slice() function

Returns a slice object.

57
Python sorted() function

Returns a sorted list from the given iterable.

58
Python staticmethod() function

Transforms a method into a static method.

59
Python str() function

Returns the string version of the object.

60
Python super() function

Returns a proxy object of the base class.

61
Python tuple() function

Returns a tuple.

62
Python type() function

Returns the type of the object.

63
Python vars() function

Returns the __dict__ attribute.

64
Python zip() function

Returns an iterator of tuples.

https://www.tutorialspoint.com/python/python-set-function.htm
https://www.tutorialspoint.com/python/python_setattr_function.htm
https://www.tutorialspoint.com/python/python_slice_function.htm
https://www.tutorialspoint.com/python/python_sorted_function.htm
https://www.tutorialspoint.com/python/python_staticmethod_function.htm
https://www.tutorialspoint.com/python/python-str-function.htm
https://www.tutorialspoint.com/python/python_super_function.htm
https://www.tutorialspoint.com/python/python-tuple-function.htm
https://www.tutorialspoint.com/python/python_type_function.htm
https://www.tutorialspoint.com/python/python_vars_function.htm
https://www.tutorialspoint.com/python/python_zip_function.htm

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

65
Python __import__() function

Function called by the import statement.

66
Python unichr() function

Converts a Unicode code point to its corresponding Unicode character.

67
Python long() function

Represents integers of arbitrary size.

Built-in Mathematical Functions:

There are some additional built-in functions that are used for performing only mathematical

operations in Python, they are listed below −

Sr.No. Function & Description

1

Python abs() function

The abs() function returns the absolute value of x, i.e. the positive distance between x and

zero.

2

Python max() function

The max() function returns the largest of its arguments or largest number from the iterable

(list or tuple).

3

Python min() function

The function min() returns the smallest of its arguments i.e. the value closest to negative

infinity, or smallest number from the iterable (list or tuple)

4

Python pow() function

The pow() function returns x raised to y. It is equivalent to x**y. The function has third

optional argument mod. If given, it returns (x**y) % mod value

https://www.tutorialspoint.com/python/python_import_function.htm
https://www.tutorialspoint.com/python/python-unichr-function.htm
https://www.tutorialspoint.com/python/python-long-function.htm
https://www.tutorialspoint.com/python/number_abs.htm
https://www.tutorialspoint.com/python/number_max.htm
https://www.tutorialspoint.com/python/number_min.htm
https://www.tutorialspoint.com/python/pow_function.htm

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

5

Python round() Function

round() is a built-in function in Python. It returns x rounded to n digits from the decimal

point.

6

Python sum() function

The sum() function returns the sum of all numeric items in any iterable (list or tuple). An

optional start argument is 0 by default. If given, the numbers in the list are added to start

value.

3.9. SCOPE OF VARIABLES:

 The scope of a variable in Python is defined as the specific area or region where the

variable is accessible to the user. The scope of a variable depends on where and how it is

defined. In Python, a variable can have either a global or a local scope.

Types of Scope for Variables in Python:

On the basis of scope, the Python variables are classified in three categories

• Local Variables

• Global Variables

• Nonlocal Variables

Local Variables:

A local variable is defined within a specific function or block of code. It can only be accessed

by the function or block where it was defined, and it has a limited scope. In other words, the

scope of local variables is limited to the function they are defined in and attempting to access

them outside of this function will result in an error. Always remember, multiple local variables

can exist with the same name.

Example

The following example shows the scope of local variables.

def myfunction():

 a = 10

 b = 20

https://www.tutorialspoint.com/python/number_round.htm
https://www.tutorialspoint.com/python/sum_function.htm

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 print("variable a:", a)

 print("variable b:", b)

 return a+b

 print (myfunction())

In the above code, we have accessed the local variables through its function. Hence, the code

will produce the following output −

variable a: 10

variable b: 20

30

Global Variables:

A global variable can be accessed from any part of the program, and it is defined outside any

function or block of code. It is not specific to any block or function.

Example

The following example shows the scope of global variable. We can access them inside as well

as outside of the function scope.

#global variables

name = 'TutorialsPoint'

marks = 50

def myfunction():

 # accessing inside the function

 print("name:", name)

 print("marks:", marks)

function call

myfunction()

The above code will produce the following output −

name: TutorialsPoint

marks: 50

Nonlocal Variables:

The Python variables that are not defined in either local or global scope are called nonlocal

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

variables. They are used in nested functions.

Example

The following example demonstrates the how nonlocal variables works.

def yourfunction():

 a = 5

 b = 6

 # nested function

 def myfunction():

 # nonlocal function

 nonlocal a

 nonlocal b

 a = 10

 b = 20

 print("variable a:", a)

 print("variable b:", b)

 return a+b

 print (myfunction())

yourfunction()

The above code will produce the below output −

variable a: 10

variable b: 20

30

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

UNIT IV: OBJECT ORIENTED FEATURES

Introduction –Defining Classes – Public and Private Data member – Creating Object –

Accessing class members – Using Objects. Constructors – Destructors – Introduction of simple

Inheritance – Introduction of simple Polymorphism.

ERROR HANDLING: Run Time Errors – Exception Model.

4.1. OBJECT ORIENTED FEATURES – INTRODUCTION:

 Object-Oriented Programming (OOP) is a powerful way of writing software that

models real-world concepts into reusable code components called objects and classes. Python

is a full-featured, object-oriented language, meaning it provides all the necessary constructs to

implement this paradigm effectively.

The primary goal of OOP is to bind data (attributes) and the functions that operate on that data

(methods) into single units, making code more organized, reusable, and maintainable.

Core Terminology:

The foundation of OOP relies on these basic concepts:

• Class: A blueprint or template that defines the structure and behavior for a specific

category of objects.

• Object: A specific instance of a class. The class is the blueprint; the object is the actual

item built from that blueprint.

• Attribute: A variable stored within an object that represents its state or data (e.g.,

a Car object might have a color attribute).

• Method: A function defined within a class that defines the actions or behaviors an

object can perform (e.g., a Car object might have a drive() method).

The Four Pillars of OOP in Python:

Python's object-oriented nature is built upon four fundamental principles (often remembered

by the acronym A PIE: Abstraction, Polymorphism, Inheritance, Encapsulation):

1. Encapsulation:

Encapsulation is the bundling of data and the methods that operate on that data within a single

class unit.

• How Python uses it: The primary goal is to hide the internal workings and state of an

object from the outside world. This protects data from being accidentally modified. In

Python, this is achieved by defining methods that act as the only interface for modifying

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

internal attributes.

2. Abstraction:

Abstraction is about simplifying complexity by providing a simple, clean interface while hiding

the complicated implementation details.

• How Python uses it: Users interact with an object through a simple set of methods

without needing to understand the underlying code. The len() function is an abstraction:

you use it to find the length of a list, string, or dictionary, without caring how it

calculates the length for each specific type. Python allows developers to define abstract

base classes (ABCs) using the standard library's abc module to enforce this structure.

3. Inheritance:

Inheritance is a mechanism for creating a new class (the child or subclass) that derives

properties and behaviors from an existing class (the parent or superclass).

• How Python uses it: It promotes code reuse and establishes a hierarchical "is-a"

relationship (e.g., a Dog is a kind of Animal).

Python

class Animal: # Parent Class

 def speak(self):

 return "Animal sound"

class Dog(Animal): # Child class inherits speak()

 def speak(self):

 return "Woof!"

Use code with caution.

 4. Polymorphism:

Polymorphism (meaning "many forms") allows objects of different classes to respond to the

same method call in different ways.

• How Python uses it: Python utilizes "Duck Typing" for polymorphism. As long as

different objects share the same method name (interface), your code can treat them

interchangeably. A single function can accept a Dog object or a Cat object and call

a .speak() method on either one, getting the appropriate unique response.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

4.2. DEFINING CLASSES:

 In Python, we define a class using the class keyword, followed by the class name.

Class names are traditionally written using CapWords or CamelCase convention.

Classes serve as blueprints for creating objects (instances).

Basic Class Definition:

A minimal class definition in Python looks like this:

Python

class Dog:

 pass # 'pass' is a placeholder when you have no attributes or methods yet

Use code with caution.

Adding Attributes and Methods:

Classes typically contain two primary components: attributes (data/state) and methods

(functions/behavior).

Class Attributes

These attributes are shared by all instances of the class. They are defined directly within the

class body but outside any method.

Python

class Dog:

 # Class Attribute (shared by all dogs)

 species = "Canis familiaris"

Use code with caution.

Instance Attributes and the __init__ Method:

Instance attributes are unique to each specific object created from the class. They are defined

inside a special method called __init__.

The __init__ method (short for initialization) is a constructor. It is automatically called every

time you create a new instance of the class.

• self Parameter: The first parameter of any method in a class definition must be self.

When you call a method on an instance (e.g., my_dog.bark()), Python automatically

passes the instance itself to the self parameter. It refers to the specific object that called

the method.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Python

class Dog:

 species = "Canis familiaris"

 # The constructor method

 def __init__(self, name, breed):

 # Instance attributes (unique to each dog object)

 self.name = name

 self.breed = breed

Use code with caution.

Methods:

Methods are functions defined within the class. They always take self as their first argument,

giving them access to the instance's specific data.

Python

class Dog:

 species = "Canis familiaris"

 def __init__(self, name, breed):

 self.name = name

 self.breed = breed

 # An instance method (defines behavior)

 def bark(self):

 return f"{self.name} says Woof!"

 def get_info(self):

 return f"{self.name} is a {self.breed} of species {self.species}."

Use code with caution.

Creating and Using Class Instances:

Once the class is defined, you can create objects (instances) by calling the class name as if it

were a function. The arguments you pass (e.g., "Buddy", "Golden Retriever") are passed to

the __init__ method.

Python

Create two instances of the Dog class

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

dog1 = Dog("Buddy", "Golden Retriever")

dog2 = Dog("Max", "German Shepherd")

Access attributes using dot notation

print(dog1.name)

print(dog2.breed)

Call methods using dot notation

print(dog1.bark())

print(dog2.get_info())

Access the class attribute (same for both)

print(dog1.species)

print(Dog.species)

Use code with caution.

Output:

Buddy

German Shepherd

Buddy says Woof!

Max is a German Shepherd of species Canis familiaris.

Canis familiaris

Canis familiaris

4.3. PUBLIC AND PRIVATE DATA MEMBER:

 In Python, the distinction between "public" and "private" data members (attributes and

methods) is implemented differently than in languages like Java or C++. Python does not have

strict access modifiers (public, private, protected). Instead, it relies heavily on naming

conventions and a mechanism called name mangling to suggest or enforce privacy.

By default, all members in a Python class are considered public.

1. Public Members:

Public members are accessible from anywhere, both inside the class methods and outside the

class when an instance is used. All attributes and methods in Python are public by default.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Python

class Company:

 def __init__(self, name, employees):

 # Public attributes

 self.name = name

 self.employees = employees

 # Public method

 def display_info(self):

 print(f"Company: {self.name}, Employees: {self.employees}")

Create an instance

my_company = Company("TechCorp", 150)

Access public attributes directly from outside

print(f"Company name is: {my_company.name}")

Call the public method

my_company.display_info()

Use code with caution.

2. Private Members (Conventions and Name Mangling):

Python uses specific naming conventions to indicate that a member should not be accessed

directly from outside the class.

A. The Convention: Single Underscore Prefix (_member_name)

Prefixing an attribute or method name with a single underscore (_) is the standard Pythonic way

to indicate a "protected" or "internal use only" member.

• Behavior: This is purely a convention for the developer. Python does not technically

prevent external access; it signals to the user of the class that they should treat this

member as internal implementation detail and ideally not touch it directly.

• Use Case: Often used when you intend for a method to be used by subclasses

(inheritance) but not by general users of the class.

Python

class BankAccount:

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 def __init__(self, initial_balance):

 self.balance = initial_balance # Public attribute

 self._internal_log = [] # Protected attribute (Convention only)

 def deposit(self, amount):

 self.balance += amount

 self._log_transaction(f"Deposited {amount}")

 def _log_transaction(self, message):

 # This method should only be called internally

 self._internal_log.append(message)

 print(f"[LOGGED]: {message}")

my_account = BankAccount(100)

my_account.deposit(50)

You CAN access the protected member, but you SHOULDN'T

print(my_account._internal_log)

Use code with caution.

B. Strong Privacy: Double Underscore Prefix (__member_name):

Prefixing a name with a double underscore (__) initiates a mechanism called name mangling.

• Behavior: Python renames the attribute internally to _ClassName__attribute_name.

This makes accessing it from outside the class difficult (though not impossible). It

serves as a strong signal for a "private" member.

• Use Case: Prevents accidental modification from outside the class and, more

importantly, avoids name collisions if a subclass uses the same attribute name.

Python

class DataProcessor:

 def __init__(self, data):

 self.__raw_data = data # Private attribute using name mangling

 def process(self):

 # Can be accessed normally inside the class

 return self.__analyze_data()

 def __analyze_data(self):

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 # Private method using name mangling

 return f"Analyzing {self.__raw_data}"

processor = DataProcessor("financials")

This works fine

print(processor.process())

This will raise an AttributeError: 'DataProcessor' object has no attribute '__raw_data'

print(processor.__raw_data)

You can access it using the mangled name, but this is a hack:

print(processor._DataProcessor__raw_data)

4.4. CREATING OBJECT:

 In Python, an object is an instance of a class, which acts as a blueprint for creating

objects. Each object contains data (variables) and methods to operate on that data. Python is

object-oriented, meaning it focuses on objects and their interactions. For a better nderstanding

of the concept of objects in Python. Let's consider an example, many of you have played

CLASH OF CLANS, so let's assume base layout as the class which contains all the buildings,

defenses, resources, etc. Based on these descriptions we make a village, here the village is the

object in Python.

Creating an object:

When creating an object from a class, we use a special method called the constructor, defined

as __init__(), to initialize the object's attributes. Example:

class Car:

 def __init__(self, model, price):

 self.model = model

 self.price = price

Audi = Car("R8", 100000)

print(Audi.model)

print(Audi.price)

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Output

R8

100000

Explanation: Car class defines a blueprint for car objects. The __init__() constructor

initializes the model and price attributes, using self to refer to the current object. When Audi =

Car("R8", 100000) is executed, "R8" is assigned to model and 100000 to price. These attributes

are accessed via dot notation, like Audi.model and Audi.price.

Accessing class members:

In Python, you can access both instance variables and methods of a class using an object.

Instance variables are unique to each object, while methods define the behavior of the objects.

Below are examples demonstrating how to access and interact with class members:

Example 1: In this example, we use methods to access and modify the car's attributes.

class Car:

 def __init__(self, model):

 self.model = model

 def setprice(self, price):

 self.price = price

 def getprice(self):

 return self.price

Audi = Car("R8")

Audi.setprice(1000000)

print(Audi.getprice())

Output

1000000

Explanation: Car class defines a blueprint for car objects with a constructor (__init__()) to

initialize the model attribute. The setprice() method assigns a price and getprice() retrieves it.

When Audi = Car("R8") is executed, the model is set to "R8", the price is set

using setprice() and the price is accessed with getprice().

Example 2: In this example, we create multiple car objects and access the model and price

attributes directly using the objects, without the need for methods.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

class Car:

 vehicle = 'Car'

 def __init__(self, model, price):

 self.model = model

 self.price = price

Audi = Car("R8", 100000)

BMW = Car("I8", 10000000)

print(Audi.model, Audi.price)

print(BMW.model, BMW.price)

Output

R8 100000

I8 10000000

Explanation: Car class defines a blueprint with a class variable vehicle and a constructor to

initialize model and price. When Audi = Car("R8", 100000) and BMW = Car("I8",

10000000) are executed, the attributes are set and accessed directly,

like Audi.model and Audi.price.

Self keyword in Python objects:

In Python objects, the self keyword represents the current instance of the class. It is

automatically passed to instance methods and is used to access and modify the object's own

attributes and methods. By using self, each object can maintain its own separate state, ensuring

that operations are performed on the correct instance. Example:

class Test:

 def __init__(self, a, b):

 self.country = a

 self.capital = b

 def fun(self):

 print("Capital of " + self.country + " is " + self.capital)

x = Test("India", "Delhi")

x.fun()

https://www.geeksforgeeks.org/python/self-in-python-class/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Output

Capital of India isDelhi

Explanation: Test class uses the __init__() constructor to initialize the country and capital

attributes with self. When x is created with "India" and "Delhi", x.country and x.capital are set.

The fun() method then accesses these attributes via self .

Deleting an object:

You can delete objects, variables or object properties using the del keyword. This removes the

reference to the object or attribute from memory, allowing Python's garbage collector to

reclaim the memory if no other references exist. Example:

class Car:

 def __init__(self, brand, model):

 self.brand = brand

 self.model = model

 Audi = Car("Audi", "A6") # creating obj

del Audi # deleting obj

print(Audi.brand)

Output

Hangup (SIGHUP)

Traceback (most recent call last):

 File "/home/guest/sandbox/Solution.py", line 10, in <module>

 print(Audi.brand)

 ^^^^

NameError: name 'Audi' is not defined

Explanation: After creating the Audi object, the del keyword deletes it. Attempting to

access Audi.brand afterward results in an error because the object no longer exists.

4.5. ACCESSING CLASS MEMBERS:

 In Python, class members (attributes and methods) can be accessed using dot

notation (.), both from within the class definition and externally via object instances. The rules

for access differ slightly depending on whether the member is a class member (shared by all

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

instances) or an instance member (unique to a specific object).

Accessing Instance Members:

Instance members are unique to each object and are accessed using the instance name followed

by the dot operator.

1. Accessing from Outside the Class

Once an object is created, you can read or modify its instance attributes directly.

Python

class Student:

 def __init__(self, name, grade):

 self.name = name # Instance attribute

 self.grade = grade # Instance attribute

 def display_student(self):

 print(f"{self.name} is in grade {self.grade}")

Create an instance

student1 = Student("Alice", 10)

Accessing attributes externally

print(f"Student 1 Name: {student1.name}")

print(f"Student 1 Grade: {student1.grade}")

Modifying attributes externally

student1.grade = 11

print(f"Student 1 new Grade: {student1.grade}")

Calling a method externally

student1.display_student()

Use code with caution.

2. Accessing from Inside the Class (Methods):

Within the class's methods (like __init__ or display_student above), instance members are

accessed using the self keyword, which refers to the current object instance.

Python

class Student:

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 def __init__(self, name, grade):

 # Accessing instance attributes using 'self'

 self.name = name

 self.grade = grade

Use code with caution.

Accessing Class Members:

Class members are defined directly in the class body and are shared across all instances.

1. Accessing using the Class Name (Recommended)

The most direct and explicit way to access a class member is by using

the ClassName.member_name syntax.

Python

class Car:

 # Class attribute

 wheels = 4

Accessing the class attribute directly using the class name

print(f"All cars have {Car.wheels} wheels.")

Use code with caution.

2. Accessing using an Instance Name:

You can also access class members via an instance (instance.member_name). If the instance

doesn't have an instance attribute with that name, Python automatically looks up the value in

the class scope.

Python

my_car = Car()

your_car = Car()

print(f"My car wheels: {my_car.wheels}")

print(f"Your car wheels: {your_car.wheels}")

Use code with caution.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

3. Accessing from Inside the Class (Methods):

You can access class members inside a method using either self.

member_name or ClassName.member_name.

Python

class Car:

 wheels = 4

 def display_wheels(self):

 # Access using self (Python looks up the chain)

 print(f"Using self: {self.wheels} wheels")

 # Access using Class Name (Explicit reference)

 print(f"Using Car: {Car.wheels} wheels")

my_car = Car()

my_car.display_wheels()

4.6. USING OBJECTS:

 Using objects in Python involves creating instances of a class and then interacting with

their attributes (data) and methods (behaviors). Here is a step-by-step guide on how to

effectively use objects in Python, building on the concepts of defining classes and creating

instances.

Prerequisites: Defining the Class:

Before using an object, you must define its blueprint (the class). Let's use a Book class as an

example:

Python

class Book:

 # Class attribute

 material_type = "paperback"

 # Constructor method to initialize instance attributes

 def __init__(self, title, author, pages):

 self.title = title # Instance attribute

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 self.author = author # Instance attribute

 self.pages = pages # Instance attribute

 self.is_opened = False # Initial state

 # Instance method

 def open_book(self):

 if not self.is_opened:

 self.is_opened = True

 return f"Opening '{self.title}'."

 else:

 return f"'{self.title}' is already open."

 # Instance method to get info

 def get_summary(self):

 return f"'{self.title}' by {self.author}, {self.pages} pages."

Step 1: Create an Object (Instantiation)

You create a concrete object (an instance) from the class blueprint:

Python

Create two different instances of the Book class

book1 = Book("The Hitchhiker's Guide to the Galaxy", "Douglas Adams", 192)

book2 = Book("Dune", "Frank Herbert", 412)

Use code with caution.

Step 2: Accessing Attributes

You can access the data stored within an object using the dot notation (.). You can read the

values or change them.

Reading Attributes:

Python

print(f"Book 1 Title: {book1.title}")

print(f"Book 2 Author: {book2.author}")

print(f"Book 1 Current State (is_opened): {book1.is_opened}")

Output:

Book 1 Title: The Hitchhiker's Guide to the Galaxy

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Book 2 Author: Frank Herbert

Book 1 Current State (is_opened): False

Modifying Attributes:

You can change the state of a specific object instance by reassigning its attribute value:

Python

book1.pages = 200 # Update the number of pages for book1

print(f"Book 1 new pages: {book1.pages}")

Output:

Book 1 new pages: 200

Use code with caution.

Step 3: Calling Methods

Methods are functions defined within the class that define the object's behaviors. You call them

using dot notation, just like attributes, but with parentheses () to execute them.

Python

Call the 'open_book' method on book1

message1 = book1.open_book()

print(message1)

Call the 'get_summary' method on book2

summary2 = book2.get_summary()

print(summary2)

Check the state after calling the method

print(f"Book 1 New State (is_opened): {book1.is_opened}")

Output:

Opening 'The Hitchhiker's Guide to the Galaxy'.

'Dune' by Frank Herbert, 412 pages.

Book 1 New State (is_opened): True

Step 4: Using Objects in Data Structures

Objects are first-class citizens in Python, meaning you can store them in lists, dictionaries, or

pass them as arguments to functions.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Python

Store objects in a list

my_books = [book1, book2]

Loop through the list of objects

for book in my_books:

 print(f"Summary: {book.get_summary()}")

 # We can call methods and access attributes within the loop

4.7. CONSTRUCTORS:

 In Python, a constructor is a special method that is called automatically when an object

is created from a class. Its main role is to initialize the object by setting up its attributes or state.

The method __new__ is the constructor that creates a new instance of the class

while __init__ is the initializer that sets up the instance's attributes after creation. These

methods work together to manage object creation and initialization.

__new__ Method:

This method is responsible for creating a new instance of a class. It allocates memory

and returns the new object. It is called before __init__.

class ClassName:

 def __new__(cls, parameters):

 instance = super(ClassName, cls).__new__(cls)

 return instance

To learn more, please refer to "__new__ " method

__init__ Method:

This method initializes the newly created instance and is commonly used as a constructor in

Python. It is called immediately after the object is created by __new__ method and is

responsible for initializing attributes of the instance.

Syntax:

class ClassName:

 def __init__(self, parameters):

 self.attribute = value

https://www.geeksforgeeks.org/python/__new__-in-python/
https://www.geeksforgeeks.org/python/__init__-in-python/
https://www.geeksforgeeks.org/python/__new__-in-python/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Note: It is called after __new__ and does not return anything (it returns None by default).

To learn more, please refer to "__init__" method

Differences Between __init__ and __new__

__new__ method:

• Responsible for creating a new instance of the class.

• Rarely overridden but useful for customizing object creation and especially in singleton

or immutable objects.

__init__ method:

• Called immediately after __new__.

• Used to initialize the created object.

Types of Constructors:

Constructors can be of two types.

1. Default Constructor

A default constructor does not take any parameters other than self. It initializes the object with

default attribute values.

class Car:

 def __init__(self):

 #Initialize the Car with default attributes

 self.make = "Toyota"

 self.model = "Corolla"

 self.year = 2020

Creating an instance using the default constructor

car = Car()

print(car.make)

print(car.model)

print(car.year)

Output

Toyota

https://www.geeksforgeeks.org/python/__init__-in-python/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Corolla

2020

2. Parameterized Constructor:

A parameterized constructor accepts arguments to initialize the object's attributes with specific

values.

class Car:

 def __init__(self, make, model, year):

 #Initialize the Car with specific attributes.

 self.make = make

 self.model = model

 self.year = year

Creating an instance using the parameterized constructor

car = Car("Honda", "Civic", 2022)

print(car.make)

print(car.model)

print(car.year)

Output

Honda

Civic

2022

4.8. DESTRUCTORS:

Destructors are called when an object gets destroyed. In Python, destructors are not needed as

much as in C++ because Python has a garbage collector that handles memory management

automatically.

The __del__() method is a known as a destructor method in Python. It is called when all

references to the object have been deleted i.e when an object is garbage collected.

Syntax of destructor declaration:

 def __del__(self):

 # body of destructor

https://www.geeksforgeeks.org/python/delattr-del-python/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Note : A reference to objects is also deleted when the object goes out of reference or when

the program ends.

Example 1 : Here is the simple example of destructor. By using del keyword, we deleted the

all references of object 'obj', therefore destructor invoked automatically.

Python program to illustrate destructor

class Employee:

 # Initializing

 def __init__(self):

 print('Employee created.')

 # Deleting (Calling destructor)

 def __del__(self):

 print('Destructor called, Employee deleted.')

obj = Employee()

del obj

Output

Employee created.

Destructor called, Employee deleted.

Note : The destructor was called after the program ended or when all the references to object

are deleted i.e when the reference count becomes zero, not when object went out of scope.

Example 2: This example gives the explanation of above-mentioned note. Here, notice that the

destructor is called after the 'Program End...' printed.

Python program to illustrate destructor

 class Employee:

 # Initializing

 def __init__(self):

 print('Employee created')

 # Calling destructor

 def __del__(self):

 print("Destructor called")

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 def Create_obj():

 print('Making Object...')

 obj = Employee()

 print('function end...')

 return obj

 print('Calling Create_obj() function...')

obj = Create_obj()

print('Program End...')

Output

Calling Create_obj() function...

Making Object...

Employee created

function end...

Program End...

Destructor called

Example 3: Now, consider the following example :

Python program to illustrate destructor

 class A:

 def __init__(self, bb):

 self.b = bb

 class B:

 def __init__(self):

 self.a = A(self)

 def __del__(self):

 print("die")

 def fun():

 b = B()

 fun()

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Output

die

In this example when the function fun() is called, it creates an instance of class B which passes

itself to class A, which then sets a reference to class B and resulting in a circular reference.

Generally, Python's garbage collector which is used to detect these types of cyclic references

would remove it but in this example the use of custom destructor marks this item as

"uncollectable". Simply, it doesn't know the order in which to destroy the objects, so it leaves

them. Therefore, if your instances are involved in circular references they will live in memory

for as long as the application run.

NOTE : The problem mentioned in example 3 is resolved in newer versions of python, but it

still exists in version < 3.4 .

Example: Destruction in recursion

In Python, you can define a destructor for a class using the __del__() method. This method is

called automatically when the object is about to be destroyed by the garbage collector. Here's

an example of how to use a destructor in a recursive function:

class RecursiveFunction:

 def __init__(self, n):

 self.n = n

 print("Recursive function initialized with n =", n)

 def run(self, n=None):

 if n is None:

 n = self.n

 if n <= 0:

 return

 print("Running recursive function with n =", n)

 self.run(n-1)

 def __del__(self):

 print("Recursive function object destroyed")

Create an object of the class

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

obj = RecursiveFunction(5)

Call the recursive function

obj.run()

Destroy the object

del obj

Output

('Recursive function initialized with n =', 5)

('Running recursive function with n =', 5)

('Running recursive function with n =', 4)

('Running recursive function with n =', 3)

('Running recursive function with n =', 2)

('Running recursive function with n =', 1)

Recursive function object destroyed

In this example, we define a class RecursiveFunction with an __init__() method that takes in a

parameter n. This parameter is stored as an attribute of the object.

We also define a run() method that takes in an optional parameter n. If n is not provided, it

defaults to the value of self.n. The run() method runs a recursive function that prints a message

to the console and calls itself with n-1.

We define a destructor using the __del__() method, which simply prints a message to the

console indicating that the object has been destroyed.

We create an object of the class RecursiveFunction with n set to 5, and call the run() method.

This runs the recursive function, printing a message to the console for each call.

Finally, we destroy the object using the del statement. This triggers the destructor, which prints

a message to the console indicating that the object has been destroyed.

Note that in this example, the recursive function will continue running until n reaches 0. When

n is 0, the function will return and the object will be destroyed by the garbage collector. The

destructor will then be called automatically.

Advantages of using destructors in Python:

• Automatic cleanup: Destructors provide automatic cleanup of resources used by an

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

• object when it is no longer needed. This can be especially useful in cases where

resources are limited, or where failure to clean up can lead to memory leaks or other

issues.

• Consistent behavior: Destructors ensure that an object is properly cleaned up,

regardless of how it is used or when it is destroyed. This helps to ensure consistent

behavior and can help to prevent bugs and other issues.

• Easy to use: Destructors are easy to implement in Python, and can be defined using the

__del__() method.

• Supports object-oriented programming: Destructors are an important feature of

object-oriented programming, and can be used to enforce encapsulation and other

principles of object-oriented design.

• Helps with debugging: Destructors can be useful for debugging, as they can be used

to trace the lifecycle of an object and determine when it is being destroyed.

4.9. INTRODUCTION OF SIMPLE INHERITANCE:

 Inheritance is a fundamental concept in object-oriented programming (OOP) that

allows a class (called a child or derived class) to inherit attributes and methods from another

class (called a parent or base class). In this article, we'll explore inheritance in Python.

Example: Here, we create a parent class Animal that has a method info(). Then we create

a child classes Dog that inherit from Animal and add their own behavior.

class Animal:

 def __init__(self, name):

 self.name = name

 def info(self):

 print("Animal name:", self.name)

class Dog(Animal):

 def sound(self):

 print(self.name, "barks")

d = Dog("Buddy")

d.info() # Inherited method

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

d.sound()

Output

Animal name: Buddy

Buddy barks

Explanation:

• class Animal: Defines the parent class.

• info(): Prints the name of the animal.

• class Dog(Animal): Defines Dog as a child of Animal class.

• d.info(): Calls parent method info() and d.sound(): Calls child method.

Why do we need Inheritance

• Promotes code reusability by sharing attributes and methods across classes.

• Models real-world hierarchies like Animal -> Dog or Person -> Employee.

• Simplifies maintenance through centralized updates in parent classes.

• Enables method overriding for customized subclass behavior.

• Supports scalable, extensible design using polymorphism.

super() Function

super() function is used to call the parent class’s methods. In particular, it is commonly

used in the child class’s __init__() method to initialize inherited attributes. This way, the

child class can leverage the functionality of the parent class.

Example: Here, Dog uses super() to call Animal’s constructor

Parent Class: Animal

class Animal:

https://www.geeksforgeeks.org/python/python-super/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 def __init__(self, name):

 self.name = name

 def info(self):

 print("Animal name:", self.name)

Child Class: Dog

class Dog(Animal):

 def __init__(self, name, breed):

 super().__init__(name) # Call parent constructor

 self.breed = breed

 def details(self):

 print(self.name, "is a", self.breed)

d = Dog("Buddy", "Golden Retriever")

d.info() # Parent method

d.details() # Child method

Output

Animal name: Buddy

Buddy is a Golden Retriever

Explanation:

• The super() function is used inside __init__() method of Dog to call the constructor of

Animal and initialize inherited attribute (name).

• This ensures that parent class functionality is reused without needing to rewrite the code

in the child class.

Types of Python Inheritance:

Inheritance be used in different ways depending on how many parent and child classes are

involved. They help model real-world relationships more effectively and allow flexibility

in code reuse.

Python supports several types of inheritance, let's explore it one by one:

1. Single Inheritance

In single inheritance, a child class inherits from just one parent class.

Example: This example shows a child class Employee inheriting a property from the parent

class Person.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

class Person:

 def __init__(self, name):

 self.name = name

class Employee(Person): # Employee inherits from Person

 def show_role(self):

 print(self.name, "is an employee")

emp = Employee("Sarah")

print("Name:", emp.name)

emp.show_role()

Output

Name: Sarah

Sarah is an employee

Explanation: Here Employee inherits name from Person, it also defines its own method

show_role().

2. Multiple Inheritance

In multiple inheritance, a child class can inherit from more than one parent class.

Example: This example demonstrates Employee inheriting properties from two parent

classes: Person and Job.

class Person:

 def __init__(self, name):

 self.name = name

class Job:

 def __init__(self, salary):

 self.salary = salary

class Employee(Person, Job): # Inherits from both Person and Job

 def __init__(self, name, salary):

 Person.__init__(self, name)

 Job.__init__(self, salary)

 def details(self):

 print(self.name, "earns", self.salary)

emp = Employee("Jennifer", 50000)

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

emp.details()

Output

Jennifer earns 50000

Explanation: Here Employee gets attributes from both Person and Job and It can access

both name and salary.

3. Multilevel Inheritance

In multilevel inheritance, a class is derived from another derived class (like a chain).

Example: This example shows Manager inheriting from Employee, which in turn inherits

from Person.

class Person:

 def __init__(self, name):

 self.name = name

class Employee(Person):

 def show_role(self):

 print(self.name, "is an employee")

class Manager(Employee): # Manager inherits from Employee

 def department(self, dept):

 print(self.name, "manages", dept, "department")

mgr = Manager("Joy")

mgr.show_role()

mgr.department("HR")

Output

Joy is an employee

Joy manages HR department

Explanation: Here Manager inherits from Employee and Employee inherits from Person.

So Manager can use methods from both parent and grandparent.

4. Hierarchical Inheritance

In hierarchical inheritance, multiple child classes inherit from the same parent class.

Example: This example demonstrates two child classes (Employee and Intern) inheriting

from a single parent class Person.

class Person:

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 def __init__(self, name):

 self.name = name

class Employee(Person):

 def role(self):

 print(self.name, "works as an employee")

class Intern(Person):

 def role(self):

 print(self.name, "is an intern")

emp = Employee("David")

emp.role()

intern = Intern("Eva")

intern.role()

Output

David works as an employee

Eva is an intern

Explanation: Both Employee and Intern inherit from Person. They share the parent’s

property (name) but implement their own methods.

5. Hybrid Inheritance

Hybrid inheritance is a combination of more than one type of inheritance.

Example: This example demonstrates TeamLead inheriting from both Employee (which

inherits Person) and Project, combining multiple inheritance types.

class Person:

 def __init__(self, name):

 self.name = name

 class Employee(Person):

 def role(self):

 print(self.name, "is an employee")

class Project:

 def __init__(self, project_name):

 self.project_name = project_name

class TeamLead(Employee, Project): # Hybrid Inheritance

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 def __init__(self, name, project_name):

 Employee.__init__(self, name)

 Project.__init__(self, project_name)

 def details(self):

 print(self.name, "leads project:", self.project_name)

lead = TeamLead("Sophia", "AI Development")

lead.role()

lead.details()

Output

Sophia is an employee

Sophia leads project: AI Development

Explanation: Here TeamLead inherits from Employee (which already inherits Person) and

also from Project. This combines single, multilevel and multiple inheritance -> hybrid.

4.10. INTRODUCTION OF SIMPLE POLYMORPHISM:

 Polymorphism means "many forms". It refers to the ability of an entity (like a

function or object) to perform different actions based on the context. Technically, in

Python, polymorphism allows same method, function or operator to behave differently

depending on object it is working with. This makes code more flexible and reusable.

Why do we need Polymorphism?

• Ensures consistent interfaces across different classes.

• Allows objects to respond differently to the same method call.

• Promotes loose coupling by relying on shared behavior, not specific types.

• Enables writing flexible, reusable code that works across types.

• Simplifies testing and future extension of code.

Example of Polymorphism:

A remote control can operate multiple devices like a TV, AC or music system. You press

the power button and each device responds differently TV turns on, AC starts cooling,

music system plays music. Polymorphism here means same interface (power button), but

different behavior based on device (object).

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Types of Polymorphism:

Polymorphism in Python refers to ability of the same method or operation to behave

differently based on object or context. It mainly includes compile-time and runtime

polymorphism.

1. Compile-time Polymorphism:

Compile-time polymorphism means deciding which method or operation to run during

compilation, usually through method or operator overloading. Languages like Java or C++

support this. But Python doesn’t because it’s dynamically typed it resolves method calls at

runtime, not during compilation. So, true method overloading isn’t supported in Python,

though similar behavior can be achieved using default or variable arguments.

Example:

This code demonstrates method overloading in Python using default and variable-length

arguments. The multiply() method works with different numbers of inputs, mimicking

compile-time polymorphism.

class Calculator:

 def multiply(self, a=1, b=1, *args):

 result = a * b

 for num in args:

 result *= num

 return result

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Create object

calc = Calculator()

Using default arguments

print(calc.multiply())

print(calc.multiply(4))

Using multiple arguments

print(calc.multiply(2, 3))

print(calc.multiply(2, 3, 4))

Output

1

4

6

24

2. Runtime Polymorphism (Overriding):

Runtime polymorphism means that the behavior of a method is decided while program is

running, based on the object calling it. In Python, this happens through Method

Overriding a child class provides its own version of a method already defined in the parent

class. Since Python is dynamic, it supports this, allowing same method call to behave

differently for different object types.

Example:

This code shows runtime polymorphism using method overriding. The sound() method is

defined in base class Animal and overridden in Dog and Cat. At runtime, correct method is

called based on object's class.

class Animal:

 def sound(self):

 return "Some generic sound"

class Dog(Animal):

 def sound(self):

 return "Bark"

class Cat(Animal):

 def sound(self):

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 return "Meow"

Polymorphic behavior

animals = [Dog(), Cat(), Animal()]

for animal in animals:

 print(animal.sound())

Output

Bark

Meow

Some generic sound

Explanation: Here, sound method behaves differently depending on whether object is a

Dog, Cat or Animal and this decision happens at runtime. This dynamic nature makes

Python particularly powerful for runtime polymorphism.

Polymorphism in Built-in Functions:

Python’s built-in functions like len() and max() are polymorphic they work with different

data types and return results based on type of object passed. This showcases it's dynamic

nature, where same function name adapts its behavior depending on input.

Example:

This code demonstrates polymorphism in Python’s built-in functions handling strings, lists,

numbers and characters differently while using same function name.

print(len("Hello")) # String length

print(len([1, 2, 3])) # List length

print(max(1, 3, 2)) # Maximum of integers

print(max("a", "z", "m")) # Maximum in strings

Output

5

3

3

z

Polymorphism in Functions:

In Python, polymorphism lets functions accept different object types as long as they support

needed behavior. Using duck typing, Python focuses on whether an object has right method

https://www.geeksforgeeks.org/python/duck-typing-in-python/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

not its type allowing flexible and reusable code.

Example:

This code demonstrates polymorphism using duck typing as perform_task() function works

with different object types (Pen and Eraser), as long as they have a .use() method showing

flexible and reusable function design.

class Pen:

 def use(self):

 return "Writing"

class Eraser:

 def use(self):

 return "Erasing"

def perform_task(tool):

 print(tool.use())

perform_task(Pen())

perform_task(Eraser())

Output

Writing

Erasing

Polymorphism in Operators:

In Python, same operator (+) can perform different tasks depending on operand types. This

is known as operator overloading. This flexibility is a key aspect of polymorphism in

Python.

Example:

This code shows operator polymorphism as + operator behaves differently based on data

types adding integers, concatenating strings and merging lists all using same operator.

print(5 + 10) # Integer addition

print("Hello " + "World!") # String concatenation

print([1, 2] + [3, 4]) # List concatenation

Output

15

Hello World!

https://www.geeksforgeeks.org/python/operator-overloading-in-python/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

[1, 2, 3, 4]

4.11. ERROR HANDLING:

 Error handling in Python allows programs to continue running smoothly even when

unexpected errors or exceptional situations (like a file not being found, or a user entering

text instead of a number) occur.

The primary mechanism for handling these events is the try...except block.

The try...except Block:

The basic structure involves placing the code that might raise an error inside a try block. If

an error occurs, the execution immediately stops within the try block and jumps to the code

within the except block.

Basic Syntax:

Python

try:

 # Code that might cause an error

 result = 10 / 0

except ZeroDivisionError:

 # Code to run if that specific error occurs

 print("Error: Cannot divide by zero!")

Use code with caution.

Example 1: Handling Invalid User Input

A common scenario is dealing with user input, where a ValueError might occur if you try

to convert non-numeric text to an integer.

Python

def get_age():

 try:

 # Try to convert user input to an integer

 age = int(input("Enter your age: "))

 print(f"Your age is: {age}")

 except ValueError:

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 # Run this block if the conversion fails

 print("Invalid input. Please enter a numerical value for your age.")

get_age()

Use code with caution.

Catching Specific Exceptions

It is best practice to catch specific types of errors rather than using a generic except block.

This helps in debugging and prevents catching unexpected errors you didn't intend to

handle.

Python

try:

 # Example: Accessing a non-existent file

 with open('non_existent_file.txt', 'r') as f:

 content = f.read()

except FileNotFoundError:

 print("The file was not found. Please check the file path.")

except IOError:

 # Handles general input/output errors

 print("An I/O error occurred.")

Use code with caution.

You can also use the as e syntax to access the error message provided by Python itself:

Python

try:

 my_list = [1, 2]

 print(my_list[3]) # This causes an IndexError

except IndexError as e:

 print(f"An index error occurred: {e}")

 # Output: An index error occurred: list index out of range

Use code with caution.

The else and finally Blocks:

The try...except block can be extended with two optional blocks: else and finally.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

The else Block:

The else block runs only if the code inside the try block executes

successfully without raising any exceptions.

Python

try:

 # This might fail if denominator is 0

 numerator = 10

 denominator = 2

 result = numerator / denominator

except ZeroDivisionError:

 print("Cannot divide by zero.")

else:

 # This runs only if NO error occurred in 'try'

 print(f"The result is: {result}")

Use code with caution.

The finally Block:

The finally block always executes, regardless of whether an exception was raised or

handled. It is typically used for cleanup operations that must happen (e.g., closing a file or

network connection).

Python

try:

 f = open("myfile.txt", "w")

 f.write("Some data")

except IOError:

 print("Error writing to file.")

finally:

 # This will always run, ensuring the file is closed

 if 'f' in locals() and not f.closed:

 f.close()

 print("File closed successfully in finally block.")

Use code with caution.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Raising Your Own Exceptions:

You can manually trigger an error using the raise keyword. This is useful for enforcing

business logic or indicating a specific error condition in your own functions.

Python

def validate_age(age):

 if age < 0:

 raise ValueError("Age cannot be negative!")

 if age >= 100:

 raise ValueError("Age seems too high.")

 return age

Use the function within a try block to handle your custom error

try:

 validate_age(-5)

except ValueError as e:

 print(f"Validation failed: {e}")

 # Output: Validation failed: Age cannot be negative!

4.12. RUN TIME ERRORS:

 Run-time errors, also known as exceptions, occur when a program is syntactically

correct (it passes Python's parser) but encounters a problem during execution. These errors

interrupt the normal flow of the program if they are not handled properly

using try...except blocks.

Here are the most common types of run-time errors (exceptions) encountered in Python:

1. Name Error:

This error occurs when you try to use a variable or function name that Python does not

recognize (hasn't been defined or imported).

python

Example: Typos or using an undefined variable

x = 10

print(y)

NameError: name 'y' is not defined

Example: Forgetting to import a module

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

math.pi

NameError: name 'math' is not defined

Use code with caution.

2. Type Error:

This error occurs when an operation or function is applied to an object of an inappropriate

type.

python

Example: Adding a string and an integer

result = 5 + "10"

Type Error: unsupported operand type(s) for +: 'int' and 'str'

Example: Calling a function with too many arguments

def greet(name):

 print (f" Hello, {name}")

greet("Alice", "Bob")

Type Error: greet() takes 1 positional argument but 2 were given

Use code with caution.

3. Value Error:

This error occurs when a function receives an argument of the correct type but an

inappropriate value. This is common when converting data.

python

Example: Trying to convert a non-numeric string to an integer

age = int("hello")

ValueError: invalid literal for int() with base 10: 'hello'

Use code with caution.

4. ZeroDivisionError:

This error occurs when you try to divide a number by zero.

python

Example: Basic division by zero

result = 10 / 0

ZeroDivisionError: division by zero

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Use code with caution.

5. Index Error:

This error occurs when you try to access an index that is outside the bounds of a list, tuple,

or string.

python

Example: Accessing a non-existent list item

my_list =

print(my_list)

IndexError: list index out of range

Use code with caution.

6. KeyError:

This error occurs when you try to access a non-existent key in a dictionary.

python

Example: Accessing a non-existent dictionary key

my_dict = {'a': 1, 'b': 2}

print(my_dict)

KeyError: 'c'

Use code with caution.

7. FileNotFoundError:

This error occurs when the code tries to open a file that does not exist at the specified

location.

python

Example: Trying to open a file that isn't there

f = open("missing_file.txt", "r")

FileNotFoundError: [Errno 2] No such file or directory: 'missing_file.txt'

Use code with caution.

Handling Run-Time Errors:

To prevent these errors from crashing your program, you must use the try...except block

mechanism described in Error Handling:

Python

try:

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 # Code that might crash

 print(10 / 0)

except ZeroDivisionError:

 # Code that runs instead of crashing

 print("Caught a division by zero error!")

print("Program continues running.")

4.12. EXCEPTION MODEL:

 The exception model in Python is a robust and flexible system for managing run-

time errors. It is built around the fundamental concepts of exceptions as objects, a hierarchy

of exception classes, and the structured flow of control using the try...except...finally block

mechanism.

1. Exceptions are Objects (First-Class Citizens):

In Python, errors are not just fatal events; they are instances of specific classes (objects)

that inherit from a common base class called BaseException.

When an error occurs, Python "raises" an instance of the corresponding exception class

(e.g., ValueError, ZeroDivisionError, IndexError). This object contains information about

the error, such as the type of error, the line number where it occurred, and an associated

error message.

2. The Exception Hierarchy:

All built-in exceptions form a hierarchy, which allows for granular or broad error handling.

The base of most standard errors is the Exception class.

BaseException

 ├── Exception

 ├── StandardError

 | ├── ArithmeticError

 | | ├── ZeroDivisionError

 | ├── ValueError

 | ├── IndexError

 | ├── KeyError

 | └── ... and many more

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 └── ... (SystemExit, KeyboardInterrupt etc.)

This hierarchy is crucial for the except block logic:

• Handling Broadly: An except Exception: block will catch almost all common run-time

errors.

• Handling Specifically: An except ValueError: block only catches that specific type of

error.

When you catch a parent class in the hierarchy (e.g., ArithmeticError), you automatically

catch all its children (e.g., ZeroDivisionError).

3. The try...except...finally Flow (The Exception Handling Mechanism):

The mechanism Python uses to handle exceptions is the try...except block, which alters the

standard flow of control when an error is encountered:

1. try block: Contains the code that might raise an exception. Execution proceeds

normally here unless an error occurs.

2. except block(s): If an error occurs in the try block, Python immediately stops execution

there and searches for a matching except block to handle the specific exception type

raised.

3. else block (optional): Code that executes only if the try block completed successfully

without any errors.

4. finally block (optional): Code that always executes, regardless of whether an exception

occurred, was caught, or was left unhandled. This is used for cleanup operations.

python

try:

 # 1. Code attempts to run

 result = 10 / 0

except ZeroDivisionError as e:

 # 2. Execution jumps here if error occurs

 print(f"Handled error: {e}")

else:

 # 3. Code runs ONLY if no error in try

 print(f"Calculation successful: {result}")

finally:

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 # 4. Code runs ALWAYS at the end

 print("Execution of try block concluded.")

Use code with caution.

4. Unhandled Exceptions (Propagation):

If an exception is raised in a function and there is no try...except block to catch it

immediately, the exception propagates up the call stack.

• The function stops executing, and the exception is passed to the function that called it.

• This continues up the chain until an appropriate except block is found.

• If the exception reaches the top level of the program without being handled, the program

terminates, and Python prints a Traceback message detailing where the error occurred.

5. Raising Exceptions (raise keyword):

You can manually initiate an exception using the raise keyword. This allows you to enforce

validation rules or signal specific error conditions in your own code, integrating your

custom errors into Python's standard exception model.

python

def check_positive(number):

 if number < 0:

 raise ValueError("The number must be positive.")

 return number

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

UNIT V: ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

 Introduction – History of AI – Applications of AI – Defining Algorithm – A*

Algorithm. DATA SCIENCE: Introduction – Defining Data, Information and Data

structure – Basic Concept of Probability and Statistics.

5.1. INTRODUCTION OF ARTIFICIAL INTELLIGENCE:

 In today's world, technology is growing very fast, and we are getting in touch with

different new technologies day by day. Here, one of the booming technologies of computer

science is Artificial Intelligence which is ready to +create a new revolution in the world by

making intelligent machines. The Artificial Intelligence is now all around us. It is currently

working with a variety of subfields, ranging from general to specific, such as self-driving

cars, playing chess, proving theorems, playing music, Painting, etc. AI is one of the

fascinating and universal fields of Computer science which has a great scope in future. AI

holds a tendency to cause a machine to work as a human.

 Artificial Intelligence is composed of two words Artificial and Intelligence, where

Artificial defines "man-made," and intelligence defines "thinking power", hence AI means "a

man-made thinking power." So, we can define AI as: "It is a branch of computer science by

which we can create intelligent machines which can behave like a human, think like humans,

and able to make decisions." Artificial Intelligence exists when a machine can have human-

based skills such as learning, reasoning, and solving problems With Artificial Intelligence you

do not need to preprogram a machine to do some work, despite that you can create a machine

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 with programmed algorithms which can work with own intelligence, and that is the

awesomeness of AI. It is believed that AI is not a new technology, and some people says that

as per Greek myth, there were Mechanical men in early days which can work and behave like

humans.

Why Artificial Intelligence?

 Before Learning about Artificial Intelligence, we should know that what is the importance of

AI and why should we learn it. Following are some main reasons to learn about AI:

▪ With the help of AI, you can create such software or devices which can solve real-world

problems very easily and with accuracy such as health issues, marketing, traffic issues,

etc.

▪ With the help of AI, you can create your personal virtual Assistant, such as Cortana,

Google Assistant, Siri, etc.

▪ With the help of AI, you can build such Robots which can work in an environment

where survival of humans can be at risk. AI opens a path for other new technologies,

new devices, and new Opportunities.

Advantages of Artificial Intelligence:

Following are some main advantages of Artificial Intelligence:

▪ High Accuracy with less errors: AI machines or systems are prone to less errors and

high accuracy as it takes decisions as per pre-experience or information.

▪ High-Speed: AI systems can be of very high-speed and fast-decision making, because

of that AI systems can beat a chess champion in the Chess game.

▪ High reliability: AI machines are highly reliable and can perform the same action

multiple times with high accuracy.

▪ Useful for risky areas: AI machines can be helpful in situations such as defusing a

bomb, exploring the ocean floor, where to employ a human can be risky.

▪ Digital Assistant: AI can be very useful to provide digital assistant to the users such as

AI technology is currently used by various Ecommerce websites to show the products

as per customer requirement.

▪ Useful as a public utility: AI can be very useful for public utilities such as a self-driving

car which can make our journey safer and hassle-free, facial recognition for security

purpose, Natural language processing to communicate with the human in human-

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

language, etc.

Disadvantages of Artificial Intelligence:

Every technology has some disadvantages, and the same goes for Artificial intelligence. Being

so advantageous technology still, it has some disadvantages which we need to keep in our mind

while creating an AI system. Following are the disadvantages of AI:

▪ High Cost: The hardware and software requirement of AI is very costly as it requires

lots of maintenance to meet current world requirements.

▪ Can't think out of the box: Even we are making smarter machines with AI, but still they

cannot work out of the box, as the robot will only do that work for which they are

trained, or programmed.

▪ No feelings and emotions: AI machines can be an outstanding performer, but still it

does not have the feeling so it cannot make any kind of emotional attachment with

human, and may sometime be harmful for users if the proper care is not taken.

▪ Increase dependency on machines: With the increment of technology, people are

getting more dependent on devices and hence they are losing their mental capabilities.

▪ No Original Creativity: As humans are so creative and can imagine some new ideas but

still AI machines cannot beat this power of human intelligence and cannot be creative

and imaginative

5.2. HISTORY OF AI:

 Artificial Intelligence is not a new word and not a new technology for researchers. This

technology is much older than you would imagine.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Maturation of Artificial Intelligence (1943-1952):

▪ Year 1943: The first work which is now recognized as AI was done by Warren

McCulloch and Walter pits in 1943. They proposed a model of artificial neurons.

▪ Year 1949: Donald Hebb demonstrated an updating rule for modifying the onnection

strength between neurons. His rule is now called Hebbian learning.

▪ Year 1950: The Alan Turing who was an English mathematician and pioneered

Machine learning in 1950. Alan Turing publishes "Computing Machinery and

Intelligence" in which he proposed a test. The test can check the machine's ability to

exhibit intelligent behavior equivalent to human intelligence, called a Turing test.

The birth of Artificial Intelligence (1952-1956):

▪ Year 1955: An Allen Newell and Herbert A. Simon created the "first artificial

intelligence program"Which was named as "Logic Theorist". This program had

proved 38 of 52 Mathematics theorems, and find new and more elegant proofs for some

theorems.

▪ Year 1956: The word "Artificial Intelligence" first adopted by American Computer

scientist John McCarthy at the Dartmouth Conference. For the first time, AI coined as

an academic field.

 At that time high-level computer languages such as FORTRAN, LISP, or COBOL were

invented. And the enthusiasm for AI was very high at that time.

The golden years-Early enthusiasm (1956-1974):

▪ Year 1966: The researchers emphasized developing algorithms which can solve

mathematical problems. Joseph Weizenbaum created the first chatbot in 1966, which

was named as ELIZA.

▪ Year 1972: The first intelligent humanoid robot was built in Japan which was named

as WABOT-1.

The first AI winter (1974-1980):

▪ The duration between years 1974 to 1980 was the first AI winter duration. AI winter

refers to the time period where computer scientist dealt with a severe shortage of

funding from government for AI researches.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

▪ During AI winters, an interest of publicity on artificial intelligence was decreased.

A boom of AI (1980-1987):

▪ Year 1980: After AI winter duration, AI came back with "Expert System". Expert

systems were programmed that emulate the decision-making ability of a human expert.

▪ In the Year 1980, the first national conference of the American Association of Artificial

Intelligence was held at Stanford University.

The second AI winter (1987-1993):

▪ The duration between the years 1987 to 1993 was the second AI Winter duration.

▪ Again Investors and government stopped in funding for AI research as due to high cost

but not efficient result. The expert system such as XCON was very cost effective.

The emergence of intelligent agents (1993-2011):

▪ Year 1997: In the year 1997, IBM Deep Blue beats world chess champion, Gary

Kasparov, and became the first computer to beat a world chess champion.

▪ Year 2002: for the first time, AI entered the home in the form of Roomba, a vacuum

cleaner.

▪ Year 2006: AI came in the Business world till the year 2006. Companies like Facebook,

Twitter, and Netflix also started using AI.

Deep learning, big data and artificial general intelligence (2011-present):

▪ Year 2011: In the year 2011, IBM's Watson won jeopardy, a quiz show, where it had

to solve the complex questions as well as riddles. Watson had proved that it could

understand natural language and can solve tricky questions quickly.

▪ Year 2012: Google has launched an Android app feature "Google now", which was

able to provide information to the user as a prediction.

▪ Year 2014: In the year 2014, Chatbot "Eugene Goostman" won a competition in the

infamous "Turing test."

▪ Year 2018: The "Project Debater" from IBM debated on complex topics with two

master debaters and also performed extremely well.

▪ Google has demonstrated an AI program "Duplex" which was a virtual assistant and

which had taken hairdresser appointment on call, and lady on other side didn't notice

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

that she was talking with the machine.

5.3. APPLICATIONS OF AI:

1. AI in E-Commerce:

a) Personalized Shopping

Artificial Intelligence technology is used to create recommendation engines through which you

can engage better with your customers. These recommendations are made in accordance with

their browsing history, preference, and interests. It helps in improving your relationship with

your customers and their loyalty towards your brand.

b) AI-powered Assistants

Virtual shopping assistants and chatbots help improve the user experience while shopping

online. Natural Language Processing is used to make the conversation sound as human and

personal as possible. Moreover, these assistants can have real-time engagement with your

customers. Did you know that on amazon.com, soon, customer service could be handled by

chatbots?

c) Fraud Prevention

Credit card frauds and fake reviews are two of the most significant issues that Ecommerce

companies deal with. By considering the usage patterns, AI can help reduce the possibility of

credit card frauds taking place. Many customers prefer to buy a product or service based on

customer reviews. AI can help identify and handle fake reviews.

2. AI in Navigation:

Based on research from MIT, GPS technology can provide users with accurate, timely, and

detailed information to improve safety. The technology uses a combination of Convolutional

Neural Network and Graph Neural Network, which makes lives easier for users by

automatically detecting the number of lanes and road types behind obstructions on the roads.

AI is heavily used by Uber and many logistics companies to improve operational efficiency,

analyze road traffic, and optimize routes.

3. AI in Robotics:

Robotics is another field where artificial intelligence applications are commonly used. Robots

powered by AI use real-time updates to sense obstacles in its path and pre-plan its journey

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

instantly.

It can be used for -

▪ Carrying goods in hospitals, factories, and warehouses

▪ Cleaning offices and large equipment

▪ Inventory management

4. AI in Human Resource

Did you know that companies use intelligent software to ease the hiring process? Artificial

Intelligence helps with blind hiring. Using machine learning software, you can examine

applications based on specific parameters. AI drive systems can scan job candidates' profiles,

and resumes to provide recruiters an understanding of the talent pool they must choose from.

5. AI in Healthcare:

Artificial Intelligence finds diverse applications in the healthcare sector. AI is used in

healthcare to build sophisticated machines that can detect diseases and identify cancer cells. AI

can help analyze chronic conditions with lab and other medical data to ensure early diagnosis.

AI uses the combination of historical data and medical intelligence for the discovery of new

drugs.

6. AI in Agriculture:

Artificial Intelligence is used to identify defects and nutrient deficiencies in the soil. This is

done using computer vision, robotics, and machine learning, AI can analyze where weeds are

growing. AI bots can help to harvest crops at a higher volume and faster pace than human

laborers.

7. AI in Gaming:

Another sector where Artificial Intelligence applications have found prominence is the gaming

sector. AI can be used to create smart, human-like NPCs to interact with the players.It can also

be used to predict human behavior using which game design and testing can be improved. The

Alien Isolation games released in 2014 uses AI to stalk the player throughout the game. The

game uses two Artificial Intelligence systems - ‘Director AI’ that frequently knows your

location and the ‘Alien AI,’ driven by sensors and behaviors that continuously hunt the player.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

8. AI in Automobiles:

Artificial Intelligence is used to build self-driving vehicles. AI can be used along with the

vehicle’s camera, radar, cloud services, GPS, and control signals to operate the vehicle. AI can

improve the in-vehicle experience and provide additional systems like emergency braking,

blind-spot monitoring, and driver assist steering.

9. AI in Social Media:

Instagram

On Instagram, AI considers your likes and the accounts you follow to determine what posts

you are shown on your explore tab.

Facebook

Artificial Intelligence is also used along with a tool called Deep Text. With this tool, Facebook

can understand conversations better. It can be used to translate posts from different languages

automatically.

Twitter

AI is used by Twitter for fraud detection, removing propaganda, and hateful content. Twitter

also uses AI to recommend tweets that users might enjoy, based on what type of tweets they

engage with.

10. AI in Marketing:

Artificial intelligence applications are popular in the marketing domain as well.

▪ Using AI, marketers can deliver highly targeted and personalized ads with the help of

behavioral analysis, pattern recognition, etc. It also helps with retargeting audiences at

the right time to ensure better results and reduced feelings of distrust and annoyance.

▪ AI can help with content marketing in a way that matches the brand's style and voice.

It can be used to handle routine tasks like performance, campaign reports, and much

more.

▪ Chatbots powered by AI, Natural Language Processing, Natural Language Generation,

and Natural Language Understanding can analyze the user's language and respond in

the ways humans do.

▪ AI can provide users with real-time personalizations based on their behavior and can

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

▪ be used to edit and optimize marketing campaigns to fit a local market's needs.

5.4. DEFINING ALGORITHM:

 An AI algorithm is a set of instructions or rules a machine follows to perform a specific

task. Think of it like a recipe — step-by-step instructions that take inputs (like data) and deliver

outputs (like decisions or predictions).

What makes these algorithms special is that they learn and improve over time. Unlike

traditional programming, where humans define every rule, AI algorithms uncover patterns and

insights in data to “train” themselves and adapt.

For example:

• Input: Pictures of cats and dogs in a dataset.

• Process: Teach the algorithm to tell which image is a cat or a dog by labelling them.

• Output: Once trained, the AI can predict whether a new image it’s given is a cat or a

dog.

How Do AI Algorithms Work?

 AI algorithms work by identifying patterns and applying learned knowledge to new

data. This process is broken down into key steps: data collection, training, and inference.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

1. Data Collection

AI algorithms need data—and lots of it! Their performance depends on having sufficient

examples to identify patterns.

For instance:

• Netflix analyzes your watch history to recommend movies.

• E-commerce stores analyze past purchases to suggest products you might like.

2. Preprocessing

Raw data isn’t always neat — it usually contains missing values, duplicates, or noise.

Preprocessing cleans and organizes data so that the AI can work efficiently.

Techniques include:

• Normalization (scaling data to a standard format)

• Handling missing data (filling gaps or removing problematic examples)

3. Training the Algorithm

When training an AI algorithm, you teach it to understand patterns. You can do this by feeding

it labeled data (for supervised learning; more on this shortly) or unlabeled data (for

unsupervised learning).

4. Testing and Optimization

Once trained, the algorithm’s performance is tested on new data. This ensures it understands

patterns without simply memorizing examples. If necessary, developers tweak its parameters

to improve accuracy or efficiency.

5. Making Predictions (Inference)

Once the algorithm is trained and tested, it can perform real-world tasks. For example:

• Self-driving cars use AI inference to make real-time decisions on the road.

• Sentiment analysis algorithms evaluate the tone of customer reviews to determine

whether they’re negative or positive.

https://www.digitalogy.co/blog/best-examples-of-artificial-intelligence-in-everyday-life/
https://www.digitalogy.co/blog/best-examples-of-artificial-intelligence-in-everyday-life/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Types of AI Algorithms (With Examples!)

AI algorithms come in various Flavors depending on their purpose and what type of data they

work with. Here are the primary types:

1. Supervised Learning Algorithms

Supervised algorithms learn from labelled datasets. They’re told what the outputs should look

like, enabling them to map inputs to outputs.

Example: A spam email filter. By training on examples of spam vs. legitimate emails, the AI

learns to classify emails in the future.

• Common Algorithms: Linear Regression, Support Vector Machines, and Neural

Networks

2. Unsupervised Learning Algorithms

Unsupervised learning works with unlabeled data. Instead of pre-defined categories, the

algorithm identifies patterns on its own.

Example: Clustering customers based on purchasing habits to send personalized

recommendations.

• Common Algorithms: K-Means Clustering and Principle Component Analysis (PCA)

3. Reinforcement Learning Algorithms

With reinforcement learning, AI learns by trial and error — rewarded for desired behaviors and

penalized for undesired ones.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Example: AI in gaming (e.g., AlphaGo) trains itself to beat human players using reward-based

feedback.

• Popular Technique: Q-Learning

4. Deep Learning Algorithms

Deep Learning focuses on neural networks with multiple layers (hence “deep”) to simulate how

our brains process information. This AI algorithm is particularly powerful for tasks like speech

and image recognition.

Example: Virtual assistants like Alexa recognize your voice using deep learning techniques.

5. Natural Language Processing (NLP) Algorithms

NLP algorithms specialize in understanding human language — written or spoken.

Example: ChatGPT uses NLP to generate responses that feel conversational and human-like.

• Tools: Transformers and Recurrent Neural Networks (RNNs)

5.5. A* ALGORITHM:

 The A* (A-star) algorithm is a popular and widely used pathfinding and graph traversal

algorithm in artificial intelligence.

What is A* Algorithm?

A* is an informed search algorithm, meaning it uses both the actual cost to reach a node and

an estimated cost from that node to the goal to find the shortest path efficiently.

How does A* work?

• It maintains two main sets:

▪ Open Set: Nodes that need to be evaluated.

▪ Closed Set: Nodes that have already been evaluated.

• For each node, it calculates a total cost function f(n): f(n)=g(n)+h(n) where,

▪ g(n) is the actual cost from the start node to the current node n.

▪ h(n) is the heuristic estimated cost from node n to the goal.

• The algorithm selects the node from the open set with the smallest f(n) value and

explores its neighbors.

• It updates the costs if a cheaper path to a neighbor is found.

https://www.digitalogy.co/blog/ai-in-gaming-future-of-augmented-reality-in-gaming/
https://www.digitalogy.co/blog/what-is-deep-learning-and-its-applications/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Key Components:

• g(n): Actual cost to reach node n.

• h(n): Heuristic cost estimate to reach the goal from node n.

• f(n): Estimated total cost of the cheapest solution through n.

Heuristic Function:

• The heuristic function h(n) helps guide the search.

• It must be admissible (it never overestimates the true cost).

• Common heuristics include Euclidean distance, Manhattan distance, etc., depending on

the problem context.

Steps of the A* Algorithm:

1. Initialize the open set with the start node.

2. Repeat:

o Choose the node with the lowest f(n) from the open set.

o If this node is the goal, reconstruct and return the path.

o Move this node from open to closed set.

o For each neighbor:

▪ Calculate g, h, and f.

▪ If neighbor in closed set with higher cost, ignore it.

▪ If neighbor in open set with higher cost, update it.

▪ Otherwise, add neighbor to open set.

Applications:

• Robotics path planning

• Game AI

• Network routing

• Puzzle solving

This algorithm efficiently finds the shortest path especially when a good heuristic is available.

5.6. DATA SCIENCE: INTRODUCTION

 Data science is an interdisciplinary field that uses scientific methods, processes,

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 algorithms, and systems to extract knowledge and insights from structured and unstructured

data. In simpler terms, data science is about obtaining, processing, and analyzing data to gain

insights for many purposes. In short, data science empowers the industries to make smarter,

faster, and more informed decisions. In order to find patterns and achieve such insights,

expertise in relevant domain is required. With expertise in Healthcare, a data scientists can

predict patient risks and suggest personalized treatments.

Data Science Life Cycle:

Data science is not a one-step process such that you will get to learn it in a short time and call

ourselves a Data Scientist. It's passes from many stages and every element is important. One

should always follow the proper steps to reach the ladder. Every step has its value and it counts

in your model.

1. Problem Statement:

No work starts without motivation; Data science is no exception though. It's really important

to declare or formulate your problem statement very clearly and precisely. Your whole model

and it's working depend on your statement. Many scientists consider this as the main and much

important step of Date Science. So, make sure what's your problem statement and how well

can it add value to business or any other organization.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

2. Data Collection:

After defining the problem statement, the next obvious step is to go in search of data that you

might require for your model. You must do good research, find all that you need. Data can be

in any form i.e unstructured or structured. It might be in various forms like videos,

spreadsheets, coded forms, etc. You must collect all these kinds of sources.

3. Data Cleaning:

As you have formulated your motive and also you did collect your data, the next step to do is

cleaning. Yes, it is! Data cleaning is the most favorite thing for data scientists to do. Data

cleaning is all about the removal of missing, redundant, unnecessary and duplicate data from

your collection. There are various tools to do so with the help of programming in either R

or Python. It's totally on you to choose one of them. Various scientist has their opinion on

which to choose. When it comes to the statistical part, R is preferred over Python, as it has the

privilege of more than 12,000 packages. While python is used as it is fast, easily accessible and

we can perform the same things as we can in R with the help of various packages.

4. Data Analysis and Exploration:

It's one of the prime things in data science to do and time to get inner Holmes out. It's about

analyzing the structure of data, finding hidden patterns in them, studying behaviors, visualizing

the effects of one variable over others and then concluding. We can explore the data with the

help of various graphs formed with the help of libraries using any programming language. In

R, GGplot is one of the most famous models while Matplotlib in Python.

5. Data Modelling:

Once you are done with your study that you have formed from data visualization, you must

start building a hypothesis model such that it may yield you a good prediction in future. Here,

you must choose a good algorithm that best fit to your model. There different kinds of

algorithms from regression to classification, SVM (Support vector machines), Clustering, etc.

Your model can be of a Machine Learning algorithm. You train your model with the train data

and then test it with test data. There are various methods to do so. One of them is the K-fold

method where you split your whole data into two parts, one is Train and the other is test data.

On these bases, you train your model.

https://www.geeksforgeeks.org/python/python-programming-language-tutorial/
https://www.geeksforgeeks.org/machine-learning/machine-learning/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

6. Optimization and Deployment:

You followed each and every step and hence build a model that you feel is the best fit. But how

can you decide how well your model is performing? This where optimization comes. You test

your data and find how well it is performing by checking its accuracy. In short, you check the

efficiency of the data model and thus try to optimize it for better accurate prediction.

Deployment deals with the launch of your model and let the people outside there to benefit

from that. You can also obtain feedback from organizations and people to know their need and

then to work more on your model.

5.7. DEFINING DATA, INFORMATION AND DATA STRUCTURE:

1. Data:

 Data is the raw form of information, a collection of facts, figures, symbols or

observations that represent details about events, objects or phenomena. By itself, data may

appear meaningless, but when organized, processed and interpreted, it transforms into valuable

insights that support decision-making, problem-solving and innovation.

Importance of Data:

• Decision-making and insights: Organizations use data to make better decisions. Raw

data becomes useful when transformed into insights with the help of analytics.

• AI/ML and Innovation: Data is the fuel for artificial intelligence and machine learning.

More and higher-quality data means better training, more accurate predictions.

• Digital transformation: The rise of Big Data has enabled new capabilities i.e from real-

time analytics to personalized services.

Types of Data:

Data can be categorized in different ways depending on how it is collected, stored and

represented. Broadly, it falls into the following types:

1. Quantitative Data:

Quantitative data is information that can be measured, counted and expressed in numerical

form. It provides objective values that can be analyzed statistically to identify patterns, trends

and relationships.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

• Represents numbers and measurable values.

• Can be divided into: Discrete data (Whole numbers) and Continuous data (Values on a

scale).

• Widely used in research, finance, engineering and business analytics.

Example: Age of people, number of customers visiting a store, temperature readings, sales

revenue.

2. Qualitative Data:

Qualitative data is descriptive, non-numeric information that explains qualities, characteristics

or categories rather than quantities. It helps understand opinions, experiences and meanings

behind behaviors.

• Focuses on qualities, attributes and categories rather than numbers.

• Often collected through surveys, interviews or observations.

• Useful for understanding opinions, motivations and behaviors.

Example: Customer feedback (“satisfied”, “unsatisfied”), product colors, interview transcripts,

social media comments.

3. Structured Data:

Structured data is information organized into a predefined format (rows and columns) that

makes it easily searchable and manageable by traditional databases.

• Stored in relational databases or spreadsheets.

• Easy to process with SQL and other tools.

• Best suited for tasks requiring accuracy and consistency.

Example: Bank transactions, employee records, product inventories.

4. Unstructured Data:

Unstructured data is raw information that does not follow a predefined structure or format

making it harder to organize and analyze with conventional tools.

• Accounts for over 80% of data generated globally.

• Requires advanced tools (AI, NLP, computer vision) to extract insights.

• Common in social media, multimedia and IoT applications.

Example: Emails, images, videos, voice recordings, PDF documents.

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

5. Semi-Structured Data:

Semi-structured data combines aspects of structured and unstructured data. It does not reside

in traditional tables but still contains tags or markers that provide a loose structure.

• Provides a balance between flexibility and structure.

• Easier to analyze than unstructured data, but less rigid than structured data.

• Often used in web applications, IoT devices and log systems.

Example: JSON files, XML documents, NoSQL databases, sensor logs.

Big Data:

When datasets grow in size, complexity and speed, traditional methods don’t suffice. Big

Data refers to datasets that are too large, too varied or too fast to be handled by traditional data

processing tools.

2.Information:

 The raw data is collected; after processing this raw data the outcome is information. This

information can be defined as when the data is processed, organized, and presented in a specific

context to serve its use is called information. The information doesn't have any existence

without data, mostly information have measuring unit like quantity, time, etc. There are also a

lot of differences between data and information. For information to be useful, the process data

has the following characteristics which are:

• Time - Information should be available at any point in time whenever it is required.

• Accuracy - Information should be actual and organized only then it can serve its

purpose.

• Completeness - Information should be finite and consistent.

Some examples of information:

1. Information about transportation systems such as train schedules.

2. Geographical information such as direction.

3. Payslips

4. Bank passbook

5. Printed documents.

https://www.geeksforgeeks.org/data-engineering/what-is-big-data/
https://www.geeksforgeeks.org/data-engineering/what-is-big-data/
https://www.geeksforgeeks.org/computer-organization-architecture/difference-between-information-and-data/
https://www.geeksforgeeks.org/computer-organization-architecture/difference-between-information-and-data/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Role of Information in Today's Generation:

• The information helps in generating new information which can be new theories, a new

idea's or new discovery.

• The information helps in the duplication of research because it gives an idea of what

already has been discovered.

• Information technology helps to build and emerge the growth of commerce and

business sector and generate maximum possible output.

• Information technology has played a great role in the creation of employment.

• Data analysts, systems architect, hardware engineer, and software developers, and web

designers all beholden their jobs to information technology. Without such

advancement, these jobs would not be entertained.

3. Data Structure:

A data structure is a way of organizing and storing data in a computer so that it can be accessed

and used efficiently. It refers to the logical or mathematical representation of data, as well as

the implementation in a computer program.

Classification:

Data structures can be classified into two broad categories:

• Linear Data Structure: A data structure in which data elements are arranged

sequentially or linearly, where each element is attached to its previous and next adjacent

elements, is called a linear data structure. Examples are array, stack, queue, etc.

• Non-linear Data Structure: Data structures where data elements are not placed

sequentially or linearly are called non-linear data structures. Examples are trees and

graphs.

Classification of Data Structure:

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Applications of Data Structures:

Data structures are used in a wide range of computer programs and applications, including:

• Databases: Data structures are used to organize and store data in a database, allowing

for efficient retrieval and manipulation.

• Operating systems: Data structures are used in the design and implementation of

operating systems to manage system resources, such as memory and files.

• Computer graphics: Data structures are used to represent geometric shapes and other

graphical elements in computer graphics applications.

• Artificial intelligence: Data structures are used to represent knowledge and

information in artificial intelligence systems.

Advantages of Data Structures:

The use of data structures provides several advantages, including:

• Efficiency: Data structures allow for efficient storage and retrieval of data, which is

important in applications where performance is critical.

• Flexibility: Data structures provide a flexible way to organize and store data, allowing

for easy modification and manipulation.

• Reusability: Data structures can be used in multiple programs and applications,

reducing the need for redundant code.

• Maintainability: Well-designed data structures can make programs easier to

understand, modify, and maintain over time.

5.8. BASIC CONCEPT OF PROBABILITY AND STATISTICS:

Basic Concept of Probability:

 Probability is defined as the likelihood of the occurrence of any event. It gives a

numerical value to the chance or likelihood of something happening. Probability is generally

denoted by P(E), where E represents the event.

It is expressed as a number between 0 and 1:

• 0 means the event is impossible,

• 1 means the event is certain,

• Values between 0 and 1 represent partial chances

https://www.geeksforgeeks.org/maths/events-in-probability/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Concepts of Probability are used in various real-life scenarios:

• Stock Market: Investors and analysts use probability models to understand trends and

patterns in the movement of stock prices.

• Insurance: Insurance companies use probability models to estimate the likelihood of

various events and to manage risks, which helps in setting premiums.

• Weather Forecasting: Meteorologists use probability to predict the likelihood of

weather events, such as rain, snow, storms, or temperature changes.

Formula for Probability:

The probability formula is defined as the ratio of the number of favorable outcomes to the total

number of outcomes.

Probability of Event P(E) = [Number of Favorable Outcomes] / [Total Number of Outcomes]

The probability of an event E, denoted by P(E), is a number between 0 and 1 that represents

the likelihood of E occurring.

• If P(E) = 0, the event E is impossible.

• If P(E) = 1, the event E is certain to occur.

• If 0 < P(E) < 1, the event E is possible but not guaranteed.

Note: The sum of the probabilities of all events in a sample space is always equal to 1.

For example, when we toss a coin, there are only two possible outcomes: Heads (H) or Tails

(T). However, if we toss two coins simultaneously, there will be four possible outcomes: (H,

H), (H, T), (T, H), and (T, T).

Sample Space and Event:

• Sample Space and Events Sample Space: The sample space, often denoted by S, is

the set of all possible outcomes of an experiment. For example, when rolling a six-

sided die, the sample space is S = {1, 2, 3, 4, 5, 6}.

• Event: An event is any subset of the sample space. It represents a specific outcome or

a combination of outcomes. There are many different types of events in

Probability such as Impossible and Sure Events, Mutually Exclusive Events,

Exhaustive Events, Dependent and Independent Events. For example, rolling an even

number E = {2, 4, 6}) is an event in the context of rolling a die.

https://www.geeksforgeeks.org/maths/probability-in-maths/
https://www.geeksforgeeks.org/maths/events-in-probability/
https://www.geeksforgeeks.org/maths/events-in-probability/
https://www.geeksforgeeks.org/maths/dependent-and-independent-events-probability/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Basic Probability Rules:

• Addition Rule: P(A∪B) = P(A) + P(B) - P(A∩B), where A∪B denotes the union of

events A and B.

• Multiplication Rule for Independent Events: P(A∩B) = P(A) × P(B), where A and

B are independent events.

• Complement Rule: P (A ′) = 1 - P(A), where ′ A ′ denotes the complement of event A.

Probability Distribution:

A probability distribution describes how the values of a random variable are spread or

distributed. It tells us the probability of each possible outcome in a sample space and can be

either discrete (for countable outcomes) or continuous (for measurable outcomes like height or

time).

Types of Probability Distributions:

• Bernoulli Distribution

• Binomial Distribution

• Poisson Distribution

• Uniform Distribution

• Normal Distribution (Gaussian)

• Exponential Distribution

Applications of Probability:

Some of the common events for which we can use applications of probability to check the

results are:

• Choosing a card from the deck of cards

• Flipping a coin

• Throwing a dice in the air

• Pulling a red ball out of a bucket of red and white balls

• Winning a lucky draw

Basic Concept of Statistics:

 Statistics is the science of collecting, analyzing, and interpreting data to uncover patterns

and make decisions. In data science, it acts as the backbone for understanding data and building

https://www.geeksforgeeks.org/maths/addition-rule-for-probability/
https://www.geeksforgeeks.org/maths/probability-distribution/
https://www.geeksforgeeks.org/maths/applications-of-probability/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

reliable models.

• Summarizes data using measures like mean, median, and variance

• Models uncertainty with probability and distributions

• Tests hypotheses (e.g., A/B testing)

• Finds relationships through regression and correlation

Types of Statistics:

There are commonly two types of statistics, which are discussed below:

1. Descriptive Statistics: Descriptive Statistics helps us simplify and organize big

chunks of data. This makes large amounts of data easier to understand.

2. Inferential Statistics: Inferential Statistics is a little different. It uses smaller data to

conclude a larger group. It helps us predict and draw conclusions about a population.

3. Basic formulas of statistics are,

Parameters Definition Formulas

Population Mean

(μ)

Average of the entire

group.

Σx

N

Sample Mean
Average of a subset of

the population

Σx

N

Sample/Population

Standard

Deviation

Measures how spread

out the data is from the

mean

Population σ=√
1

𝑁
∑ (xi − 𝜇)

𝑛

𝑖=1
2

Sample s=√
1

𝑁−1
∑ (xi − x̄)

𝑛

𝑖=1
2

Sample/Population

Variance

Shows how far values

are from the mean,

squared

Variance (Population) =
(Σ(xi−x̄)2

𝑛

 Variance (Sample) =
(Σ(xi−x̄)2

𝑛−1

https://www.geeksforgeeks.org/data-science/descriptive-statistic/
https://www.geeksforgeeks.org/data-science/what-is-inferential-statistics/

 Python Programming and Basics of AI & Data Science

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

Class Interval

(CI)

Range of values in a

group
CI = Upper Limit − Lower Limit

Frequency(f)
How often a value

appears
Count of occurrences

Range (R)

Difference between

largest and smallest

values

Range = Max−Min

Role in Data Science:

Probability and statistics are crucial throughout the data science process. They help data

scientists:

• Understand and prepare data using statistical methods.

• Build models based on statistical principles.

• Assess uncertainty and risk in models.

• Make data-driven decisions using techniques like A/B testing.

